Journal of Advances in

G"ITE“ MI“ns Science and Technology

Journals Vol. IV, No. VIII, February-
2013, ISSN 2230-9659

NOVEL APPROACH FOR ESTIMATING
WORKLOAD COMPLETION TIME BASED ON
EXPERIMENT-DRIVEN MODELING AND
SIMULATION OF THE IMPACT OF INTER-
QUERY INTERACTIONS

www.ignited.in

Journal of Advances in Science and Technology
Vol. IV, No. VIII, February-2013, ISSN 2230-9659

Novel Approach for Estimating Workload
Completion Time Based On Experiment-Driven
Modeling and Simulation of the Impact of Inter-

Query Interactions

Vikrant Chauhan
Research Scholar, CMJ University, Shillong, Meghalaya, India

Abstract:- While planning the execution of report-generation workloads, database administrators often
need to know how long different query workloads will take to run. Database systems run mixes of
multiple queries of different types concurrently. Hence, estimating the completion time of a query
workload requires reasoning about query mixes and inter-query interactions in the mixes; rather than
considering queries or query types in isolation. This paper presents a novel approach for estimating
workload completion time based on experiment-driven modeling and simulation of the impact of inter-
query interactions. A preliminary evaluation of this approach with TPC-H queries on IBM DB2 shows how

our approach can consistently predict workload completion times with good accuracy.

1. INTRODUCTION

Data warehouses, and Business Intelligence (BI)
workloads that run on these warehouses, are an
important and growing segment of the database
market [1]. Many Bl workloads are long-running batch
workloads that get executed repeatedly at different
periods. An important question to ask about a batch BI
workload is: “How long will this workload take to
complete?” The answer to this question is useful in
many workload management contexts. For example,
this question arises when a database administrator
(DBA) is deciding whether the execution of a report-
generation workload will fit within the available batch
window. A tool that estimates the completion time of a
Bl workload can also be used as a what-if module. For
example, the DBA can consider different ways to
reorder the workload or partition the workload in a
parallel system, and ask how long each execution
would take.

Unfortunately, the state of the art does not provide a
database administrator with any tools that predict the
completion time of a batch Bl workload. In this paper,
we address this problem and propose an approach for
predicting the completion times of such workloads. A
unique and defining feature of our approach is that it
takes query interactions into account. At any point in
the execution of a typical workload in a database
system, the system will be running a mix of queries of
different types. These queries run concurrently and
interact with each other, and this interaction can have
a significant impact on performance. Sometimes this
impact can be positive and sometimes it can be

&
A4

negative. For example, a query Q; can bring data into
the buffer pool that is then used by a concurrently
running query Q. (an example of positive interaction).
Alternatively, Q; and Q, could interfere with each
other on hardware resources such as CPU or
memory, or on internal database system resources
such as latches or locks (all examples of negative
interaction).

In order to demonstrate the significant impact of
guery interactions, we use queries from the TPC-H
decision support benchmark with a database size of
10GB running on DB2 (our experimental setting is
described in Section IIl). Table | shows the run time
of the 6 longest running TPC-H queries when they
run alone in the system, which we denote by tj .

Table Il shows three query mixes for this setting. For
each mix, the table shows the number of queries of
each type, N; , and the average run time of each
query type, A; . The high variability in Ajj illustrates
the impact of query interactions. For example,
consider the performance of Q- in the two mixes m1l
and m3. Mix ml presents an example of positive
interaction for Q;. The average run time of Q- in this
mix is 72:7 seconds, while the run time of Q; when it
is run alone in the system is 102:06 seconds. Thus,
Q- benefits from being run in this mix. On the other
hand, Q, suffers due to negative interaction in mix
m3. Mix m2 presents another example of positive
interaction, this time for Qqs.

We emphasize that these positive interactions are not
due to the simple benefit of concurrent execution

Vikrant Chauhan

www.ignited.in

Novel Approach for Estimating Workload Completion Time Based On Experiment-Driven Modeling and -
Simulation of the Impact of Inter-Query Interactions

where individual query run times increase when run
together, but the overall completion time is less than
the time required to run the queries one at a time.
Instead, we see here that every instance of Q; (or Qqg)
takes less time in mix m1 (or m2) than when it runs
alone. Further demonstration of the impact of query
interactions in query mixes can be found in [2].

Figure 1 illustrates how much the interactions in query
mixes can impact the end-to-end run times of different
workloads. The figure shows the run times of two
workloads. Both workloads consist of exactly the same
60 instances of TPC-H queries running on a 10GB
database on DB2. The database physical design and
the tuning parameters of DB2 are the same for both
workloads. The only difference between the two
workloads is the arrival order of the queries, which
results in different query mixes being executed by the
system. This simple change results in the completion
time varying from 3:3 hours to 5:4 hours. In Workload
1, queries that compete for resources get executed
concurrently, resulting in negative interactions. In
Workload 2, queries that help each other get executed
together, resulting in positive interactions. The 2.1
hour difference in performance is completely
attributable to different query interactions in the
different runs. Figure 1 also shows the completion time
predictions of our interaction-aware solution, and it is
clear that these predictions are quite accurate.

Query Type QL | @7 | @ [QB | QF | g
Run Time £, (sec) || 29461 | 10206 | 57861 | 10127 | 55436 | 57037
TABLE | : RUN TIME tj (IN SECONDS) OF

DIFFERENT TPC-H QUERY TYPES ON A 10GB
DATABASE

Q1 Q7 Q0 Q13 Q18 (71
Mix | Ny | Ay [Ny | Ay [Ny | Ay [Ny [A [Ny | 4y [Ny | 4y
mp | T[B74] 2 [275 (9030 [00] 2 [0041| 0 |00
mz | 4 |50 0O [00 [O] 00 | 0|00 |5%3)0 |00
mg | 0| 00 | 4 |245] 0 | 00 | 0 |OO| I |MAT|0 |00

TABLE Il : AVERAGE RUN TIME Aj; (IN SECONDS)
OF DIFFERENT QUERY TYPES IN QUERY MIXES
ON A 10GB DATABASE

= Actual Time
= Predicted Time

Completion time in hours

Workloads

Fig. 1. Workload completion time for different
arrival orders

We are not aware of any work focusing on predicting
the completion time of Bl workloads, particularly in an
interaction-aware manner. Overall, there is very little
work that deals in a general way with the performance
of concurrently executing query mixes and the
interactions within these mixes.

In our prior work ([3], [4]), we have addressed the
issue of interaction-aware query scheduling and
presented solutions that significantly improve
performance over interactionoblivious schedulers. In
this paper, as well as in [3] and [4], we use
experiment-driven performance modeling to capture
the effect of query interactions.

Experiment-driven performance modeling is gaining
wide acceptance as a way to build robust performance
models for complex systems. A relevant work from this
area is [5], which uses statistical learning techniques
to predict performance metrics for database queries.
That paper is able to make performance predictions
for individual query types with less than 20% error for
85% of the test cases. However, the paper focuses
exclusively on single query types and does not
consider interactions and query mixes, which are our
focus in this paper. By using our interaction-aware
techniques, we are able to achieve prediction
accuracy similar to [5] for batch Bl workloads with
interacting queries.

We present our approach for predicting the
completion time of a workload in Section Il. Section
[l presents a brief empirical evaluation of this
approach using TPC-H queries on DB2. We
conclude in Section IV.

Set of Query
Types

Training Dafa
for Model

Statistical
Madeling of
Interactions

Experimental
Sampling of
Mixes

Off-line sampling Performance
and model learning Model

Workload -
Simulate

Predicting muater

for a given

workioad Workload

R

3 Predicted Completion
Time

Fig. 2. Solution overview

II. PREDICTING COMPLETION TIME OF A
WORKLOAD

An overview of our solution is presented in Figure 2.
Our solution has two parts: (1) an experiment-driven
model learning component that we use to build
interaction-aware performance models, and (2) a
workload simulator that uses these performance
models to predict the completion time of a given

Vikrant Chauhan

™1 www.ignited.in

Journal of Advances in Science and Technology

Vol. IV, No. VIII, February-2013, ISSN 2230-9659

workload. We assume that the set of query types is

known a priori,
predicting the execution time of a given workload, we
assume that the full batch of queries in this workload is
known and queued for execution. The queries are
dispatched to the database system and they execute
concurrently until the workload completes.

determined by the DBA. When

We assume that the number of queries that execute

concurrently, also known as the multi-programming
level (MPL), is fixed, which is typically the case in
batch Bl systems [6]. Next, we describe the two parts

that make up our solution.

Experiment-driven Modeling: To predict the completion

times of different workloads, we need interaction-

aware performance models that predict the completion

times of individual query types in different query mixes.

interactions

may be possible
through

to observe different query
passively monitoring the

workloads in a production system. If we monitor the

execution of
determine which query mixes are actually encountered
in these workloads, how long each mix runs, and what
effect each mix has on the completion time of each
query type. We could then train statistical models for

production workloads, we could

the performance of different query types based on
these observations. This, however, cannot guarantee

comprehensive coverage of the space of possible
query mixes and can therefore result in inaccurate
models.
representative set of sample query mixes and to train

Thus, there is a need to generate a

the models based on these samples.

Our approach to building performance models is to run
experiments to collect samples from the space of
possible query mixes and fit statistical models to the
observed query performance in these samples. This
experiment-driven modeling is an off-line process that
is done once for a given set of query types. The
models generated via this one-time process can be
used to predict the completion time of any future

workload composed of queries from this set of query
types.

The model for a given query type, say Qi* is trained

from a set of n samples, where sample
si,1 < 7 < n,has the form
Si = (M, fflg_;: = :-\11 Ce J?‘\"iT, _ffli_;i)

Sample si denotes an observation that the average run

time of Q; queries when run in mix mi is A; (T is the

number of query types). One simple technique to

generate a representative set of samples is to choose

randomly from the space of possible query mixes.
However, random sampling is inefficient from the
modeling perspective because mixes from the same
local space may be repeated unnecessarily.

The family of space-filling designs contains more
efficient sampling techniques. Latin Hypercube
Sampling (LHS) comes from this family and performs
well in practice [7]. LHS has the nice properties of
efficiency and good coverage of the mix space. It has
successfully been used in other work on database
systems (e.g., [8], [9]). In our setting, we adjust the mix
generated by LHS such that
S Ny=M. | .
= where M is the multi-
programming level of the system. Also, we observed
that the number of distinct query types in a mix m has
a strong impact on query interactions. Let us define
the interaction level of a mix m as the number of
distinct query types in m. The maximum number of
interaction levels possible in the system is num ILs =

min(T;M). We make sure that our set of
representative mixes contain roughly equal number of
samples for all interaction levels in
{1...., numLs}.

Sampling the space of possible query interactions is
the first step towards modeling the effect of these
interactions on performance. The next step is to fit a
statistical model to the observed performance in the
samples. Our goal is to obtain a function for each

query type Q.i" of the form

A= f(Ni,.Na...,Np),

f{-]represents the statistical model. The form of

where

f{] depends on the type of model that we use (the
model structure). There are many well-known model
structures, such as linear regression, regression
trees, locally weighted linear regression, and
Gaussian processes.

The choice of model structure impacts model
accuracy, but if the training data is representative,
then a good model can typically be found easily. In
our work, we use Gaussian processes [10] since we
found them to be a good model structure that is
accurate for a broad spectrum of query mixes.

Workload Simulator: To estimate the completion time
of a given workload, we use a workload simulator that
simulates the changing query mixes during workload
execution. To predict these changing query mixes
and estimate the time that each mix will run for, the
workload simulator uses the interaction-aware
performance models built in our off-line modeling
phase. From the run times of the mixes, the simulator
estimates the completion time of the entire workload.

We consider the execution of the workload as a
sequence of mixes of M queries each, where M is the
multi-programming level of the system. These mixes,

Vikrant Chauhan

w ‘ www.ignited.in

Novel Approach for Estimating Workload Completion Time Based On Experiment-Driven Modeling and -

which we call workload phases, change when one
query finishes and another starts.

The simulator tracks the fraction of total work
completed by each query in each phase. Consider a

query instance, qj , of type {1 J* This query instance
will start with the start of some workload phase, and
this workload phase would be query phase 1 for this
qguery instance. The query will execute through
different workload phases until it completes all the

work it needs to perform. Let i be the fraction of
gj 's work completed in its query phases 1 to i. When qj
starts, its VO = U
we;; = 1. , ,

J We define the following recurrence
relation to keep track of wcij through the different
query phases:

*and qj is done when its

)

wegi-1); + (L — weg—yy;) *

Wiy

'E{!pjj

The fraction of gj ’'s work completed up to query phase
i-1is VC(i—1)3* and the remaining work after phase
i - 1is (1 - 'E'['F':?'—lil.i"]‘ The fraction of this
remaining work that is completed during query phase i

— 1./
is fﬁ.?' - E*‘a" @ijs\where I is the length of phase i and
a; is the predicted remaining completion time of query
instance gj when it executes in the query mix of phase
i. If gj continues executing in this mix, it would finish in
time a; . Since phase i will end in time li, gj will only

[

e
complete "%/ ij of its remaining work in this phase.

To estimate a; , the simulator uses the performance
model to obtain the estimated completion time of gj in

the mix of phase i, A This is the time required for
g; to execute from start to finish in this mix. Since g;

has already completed “C(i—1)7 of its work, the
simulator multiplies the estimate A*‘j by
I::l — 'H-‘f"‘(;_j_;,jJ.

aij = (1 —weg-1);) * Az

To estimate [;, the length of phase i, we observe that
phase i will continue until one of the running queries
finishes, at which point the simulator will transition to
phase i+1. Thus, phase i will end at the earliest time a
query finishes. That is,

(3)

l; min_ (a;;)

g=1...M

Simulation of the Impact of Inter-Query Interactions

fﬁt;l'

In phase i, the simulator uses Equation 1 to update the
work completed for all queries running in this phase.
After this update, some queries will have

wWeij = Lang these queries are finished and
removed from the mix. The next queries in the
workload will take their place to start phase i + 1. In
phase i + 1, the query mix is different from the one in
phase i, so the simulator uses Equation 2 to

recompute the estimated remaining time ““(i+1)7 for
all queries in the mix. The simulator then estimates the
length of phase i+1 using Equation 3. The simulator
then transitions from phase i+1 to phase i+2, and this

continues until all

executed.

workload queries are

The simulator estimates the completion time for the
whole workload, LW, as the total length of all the
workload phases:

|W | =M +1

2

i=1

Ly li

lll. EXPERIMENTS

Our experiments are run on a machine with dual
3.4GHz Intel Xeon CPUs and 4.0GB of RAM running
Windows Server 2003. The database server we use
is DB2 version 8.1. We use the TPC-H database with
scale factors 1GB and 10GB. The buffer pool size of
the database was set to 400MB and 2.4GB for the
1GB and 10GB databases, respectively. We use all
22 TPC-H query types except for Q5 which creates
and drops a view. We generate different workloads
for our experiments by varying the database size, the
number of query types, the arrival order of the
gueries, the MPL, and the scheduling policy. Some
workloads use all 21 TPC-H query types, while
others use the 6 or 12 longest running query types.
To vary the arrival order of the queries in the
workloads, we generate each workload by going
over the different query types in a round-robin
fashion and placing B instances of each query type
in the arrival queue, until all queries are in the queue.
By varying B, we vary the skew in the arrival order.
For some workloads, we use First Come First
Served as the scheduling policy and for others we

(2)use Shortest Job First. In total, we generate 90

different workloads with actual completion times
ranging from 30 minutes to more than 5 hours. Our
metric for evaluating the accuracy of completion time
prediction for a given workload is the relative error in

predicted completion time, defined as:
_ _ |pred—act| W
rel = act x 100, where pred is the

predicted and act is the actual completion time. To
build the performance models required by our
workload simulator, we

Vikrant Chauhan

&1 www.ignited.in

Journal of Advances in Science and Technology

Vol. IV, No. VI, February-2013, ISSN 2230-9659

collect samples and train a Gaussian processes model
using the Weka data mining toolkit [11] .

Figure 3 shows the cumulative frequency distribution
of the relative error in prediction for the 90 workloads
used in our experiments. (A cumulative distribution
towards the upper-left corner represents lower error
than one towards the lower-right corner.) The figure
shows the error for two cases. In one case, we use
performance models trained on 5T samples and in the
other we use models trained on 10T samples (recall
that T denotes the number of query types). Thus, for
21 TPC-H

query types, we collect no more than 105 sample
mixes in the case of 5T, and no more than 210 sample
mixes for 10T.

From Figure 3, we can see that the prediction errors in
case of 5T training samples are less than 20% about
80% of the time. If the DBA has a larger sampling
budget and is willing to collect up to 10T samples, then
the overall accuracy improves to the point where the
prediction errors are less than 20% around 90% of the
time. These end-to-end results show that our
sampling, modeling, and workload simulation
algorithms result in accurate and robust predictions
across a wide range of workloads. The DBA can now
make highly

120%

+10T-LHS
+5T-LHS

100% |

80% |

60%

40% |

Cumulative Frequency

20%

0%

0% 10% 20% 30% 50%

Percent error in prediction

40%

Fig. 3. Prediction error across all workload runs for
5T and 10T training Samples

accurate predictions for future workloads in her
database by collecting a small number of samples just
once (which can be done along with initial system
setup and tuning).

V. CONCLUSION

DBAs in a business intelligence setting often need to
predict the completion time of different batch
workloads. In this paper, we present an approach for
predicting workload completion times that takes into
account the effect of interaction among concurrently

running queries. This approach relies on: (1)
experiment driven performance modeling, and (2) a
workload simulator that uses the performance models
to simulate the execution of a workload and thereby
predict its completion time.

An experimental evaluation of our approach
demonstrates that it can predict completion times with
a high degree of accuracy across a broad spectrum of
workloads.

REFERENCES

[1] D. Feinberg and M. A. Beyer, “Magic
quadrant for data warehouse database management
systems,” Gartner Research Note, 2008,
mediaproducts.
gartner.com/reprints/microsoft/vol3/article7/article7.ht
ml.

[2] M. Ahmad, A. Aboulnaga, and S. Babu,
“Query interactions in database workloads,” in Proc.
Int. Workshop on Testing Database Systems
(DBTest), 2009.

[3] M. Ahmad, A. Aboulnaga, S. Babu, and K.
Munagala, “QShuffler: Getting the query mix right,” in
Proc. Int. Conf. on Data Engineering (ICDE), 2008.

[4] ——, “Modeling and exploiting query
interactions in database systems,” in Proc. ACM
Conf. on Information and Knowledge Management
(CIKM), 2008.

[5] A. Ganapathi, H. Kuno, U. Dayal, J. Wiener,
A. Fox, M. Jordan, and D. Patterson, “Predicting
multiple metrics for queries: Better decisions enabled
by machine learning,” in Proc. Int. Conf. on Data
Engineering (ICDE), 2009.

[6] A. Mehta, C. Gupta, and U. Dayal, “Bl Batch
Manager: A system for managing batch workloads on
enterprise data warehouses,” in Proc. Int. Conf. on
Extending Database Technology (EDBT), 2008.

[7] C. R. Hicks and K. V. Turner, Fundamental
Concepts in the Design of Experiments. Oxford
University Press, 1999.

[8] S. Duan, V. Thummala, and S. Babu, “Tuning
database configuration parameters with iTuned,” in
Proc. Int. Conf. on Very Large Databases (VLDB),
2009.

[9] S. Tozer, T. Brecht, and A. Aboulnaga, “Q-
Cop: Avoiding bad query mixes to minimize client
timeouts under heavy loads,” in Proc. Int. Conf. on
Data Engineering (ICDE), 2010.

Vikrant Chauhan

Ul ‘ www.ignited.in

Novel Approach for Estimating Workload Completion Time Based On Experiment-Driven Modeling and -
Simulation of the Impact of Inter-Query Interactions

[10] T. J. Santner, B. J. Williams, and W. Notz, The
Design and Analysis of Computer Experiments, 1st ed.
Springer, 2003.

[11] I. H. Witten and E. Frank, Data Mining:
Practical machine learning tools and techniques, 2nd
ed. Morgan Kaufmann, 2005.

@ www.ignited.in

Vikrant Chauhan

