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Abstract:- While planning the execution of report-generation workloads, database administrators often 

need to know how long different query workloads will take to run. Database systems run mixes of 

multiple queries of different types concurrently. Hence, estimating the completion time of a query 

workload requires reasoning about query mixes and inter-query interactions in the mixes; rather than 

considering queries or query types in isolation. This paper presents a novel approach for estimating 

workload completion time based on experiment-driven modeling and simulation of the impact of inter-

query interactions. A preliminary evaluation of this approach with TPC-H queries on IBM DB2 shows how 

our approach can consistently predict workload completion times with good accuracy. 

---------------------------♦----------------------------- 
 

1. INTRODUCTION  

Data warehouses, and Business Intelligence (BI) 
workloads that run on these warehouses, are an 
important and growing segment of the database 
market [1]. Many BI workloads are long-running batch 
workloads that get executed repeatedly at different 
periods. An important question to ask about a batch BI 
workload is: “How long will this workload take to 
complete?” The answer to this question is useful in 
many workload management contexts. For example, 
this question arises when a database administrator 
(DBA) is deciding whether the execution of a report-
generation workload will fit within the available batch 
window. A tool that estimates the completion time of a 
BI workload can also be used as a what-if module. For 
example, the DBA can consider different ways to 
reorder the workload or partition the workload in a 
parallel system, and ask how long each execution 
would take. 

Unfortunately, the state of the art does not provide a 
database administrator with any tools that predict the 
completion time of a batch BI workload. In this paper, 
we address this problem and propose an approach for 
predicting the completion times of such workloads. A 
unique and defining feature of our approach is that it 
takes query interactions into account. At any point in 
the execution of a typical workload in a database 
system, the system will be running a mix of queries of 
different types. These queries run concurrently and 
interact with each other, and this interaction can have 
a significant impact on performance. Sometimes this 
impact can be positive and sometimes it can be 

negative. For example, a query Q1 can bring data into 
the buffer pool that is then used by a concurrently 
running query Q2 (an example of positive interaction). 
Alternatively, Q1 and Q2 could interfere with each 
other on hardware resources such as CPU or 
memory, or on internal database system resources 
such as latches or locks (all examples of negative 
interaction). 

In order to demonstrate the significant impact of 
query interactions, we use queries from the TPC-H 
decision support benchmark with a database size of 
10GB running on DB2 (our experimental setting is 
described in Section III). Table I shows the run time 
of the 6 longest running TPC-H queries when they 
run alone in the system, which we denote by tj . 

Table II shows three query mixes for this setting. For 
each mix, the table shows the number of queries of 
each type, Nij , and the average run time of each 
query type, Aij . The high variability in Aij illustrates 
the impact of query interactions. For example, 
consider the performance of Q7 in the two mixes m1 
and m3. Mix m1 presents an example of positive 
interaction for Q7. The average run time of Q7 in this 
mix is 72:7 seconds, while the run time of Q7 when it 
is run alone in the system is 102:06 seconds. Thus, 
Q7 benefits from being run in this mix. On the other 
hand, Q7 suffers due to negative interaction in mix 
m3. Mix m2 presents another example of positive 
interaction, this time for Q18. 

We emphasize that these positive interactions are not 
due to the simple benefit of concurrent execution 
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where individual query run times increase when run 
together, but the overall completion time is less than 
the time required to run the queries one at a time. 
Instead, we see here that every instance of Q7 (or Q18) 
takes less time in mix m1 (or m2) than when it runs 
alone. Further demonstration of the impact of query 
interactions in query mixes can be found in [2]. 

Figure 1 illustrates how much the interactions in query 
mixes can impact the end-to-end run times of different 
workloads. The figure shows the run times of two 
workloads. Both workloads consist of exactly the same 
60 instances of TPC-H queries running on a 10GB 
database on DB2. The database physical design and 
the tuning parameters of DB2 are the same for both 
workloads. The only difference between the two 
workloads is the arrival order of the queries, which 
results in different query mixes being executed by the 
system. This simple change results in the completion 
time varying from 3:3 hours to 5:4 hours. In Workload 
1, queries that compete for resources get executed 
concurrently, resulting in negative interactions. In 
Workload 2, queries that help each other get executed 
together, resulting in positive interactions. The 2.1 
hour difference in performance is completely 
attributable to different query interactions in the 
different runs. Figure 1 also shows the completion time 
predictions of our interaction-aware solution, and it is 
clear that these predictions are quite accurate. 

 

TABLE I : RUN TIME tj (IN SECONDS) OF 
DIFFERENT TPC-H QUERY TYPES ON A 10GB 
DATABASE 

 

TABLE II : AVERAGE RUN TIME Aij (IN SECONDS) 
OF DIFFERENT QUERY TYPES IN QUERY MIXES 
ON A 10GB DATABASE 

 

Fig. 1. Workload completion time for different 
arrival orders 

We are not aware of any work focusing on predicting 
the completion time of BI workloads, particularly in an 
interaction-aware manner. Overall, there is very little 
work that deals in a general way with the performance 
of concurrently executing query mixes and the 
interactions within these mixes. 

In our prior work ([3], [4]), we have addressed the 
issue of interaction-aware query scheduling and 
presented solutions that significantly improve 
performance over interactionoblivious schedulers. In 
this paper, as well as in [3] and [4], we use 
experiment-driven performance modeling to capture 
the effect of query interactions. 

Experiment-driven performance modeling is gaining 
wide acceptance as a way to build robust performance 
models for complex systems. A relevant work from this 
area is [5], which uses statistical learning techniques 
to predict performance metrics for database queries. 
That paper is able to make performance predictions 
for individual query types with less than 20% error for 
85% of the test cases. However, the paper focuses 
exclusively on single query types and does not 
consider interactions and query mixes, which are our 
focus in this paper. By using our interaction-aware 
techniques, we are able to achieve prediction 
accuracy similar to [5] for batch BI workloads with 
interacting queries. 

We present our approach for predicting the 
completion time of a workload in Section II. Section 
III presents a brief empirical evaluation of this 
approach using TPC-H queries on DB2. We 
conclude in Section IV. 

 

Fig. 2. Solution overview 

II. PREDICTING COMPLETION TIME OF A 
WORKLOAD 

An overview of our solution is presented in Figure 2. 
Our solution has two parts: (1) an experiment-driven 
model learning component that we use to build 
interaction-aware performance models, and (2) a 
workload simulator that uses these performance 
models to predict the completion time of a given 
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workload. We assume that the set of query types is 
known a priori, determined by the DBA. When 
predicting the execution time of a given workload, we 
assume that the full batch of queries in this workload is 
known and queued for execution. The queries are 
dispatched to the database system and they execute 
concurrently until the workload completes. 

We assume that the number of queries that execute 
concurrently, also known as the multi-programming 
level (MPL), is fixed, which is typically the case in 
batch BI systems [6]. Next, we describe the two parts 
that make up our solution. 

Experiment-driven Modeling: To predict the completion 
times of different workloads, we need interaction-
aware performance models that predict the completion 
times of individual query types in different query mixes. 
It may be possible to observe different query 
interactions through passively monitoring the 
workloads in a production system. If we monitor the 
execution of production workloads, we could 
determine which query mixes are actually encountered 
in these workloads, how long each mix runs, and what 
effect each mix has on the completion time of each 
query type. We could then train statistical models for 
the performance of different query types based on 
these observations. This, however, cannot guarantee  
comprehensive coverage of the space of possible 
query mixes and can therefore result in inaccurate 
models. Thus, there is a need to generate a 
representative set of sample query mixes and to train 
the models based on these samples. 

Our approach to building performance models is to run 
experiments to collect samples from the space of 
possible query mixes and fit statistical models to the 
observed query performance in these samples. This 
experiment-driven modeling is an off-line process that 
is done once for a given set of query types. The 
models generated via this one-time process can be 
used to predict the completion time of any future 
workload composed of queries from this set of query 
types. 

The model for a given query type, say  is trained 
from a set of n samples, where sample 

has the form 

 
Sample si denotes an observation that the average run 
time of Qj queries when run in mix mi is Aij (T is the 
number of query types). One simple technique to 
generate a representative set of samples is to choose 
randomly from the space of possible query mixes. 
However, random sampling is inefficient from the 
modeling perspective because mixes from the same 
local space may be repeated unnecessarily. 

The family of space-filling designs contains more 
efficient sampling techniques. Latin Hypercube 
Sampling (LHS) comes from this family and performs 
well in practice [7]. LHS has the nice properties of 
efficiency and good coverage of the mix space. It has 
successfully been used in other work on database 
systems (e.g., [8], [9]). In our setting, we adjust the mix 
generated by LHS such that 

where M is the multi-
programming level of the system. Also, we observed 
that the number of distinct query types in a mix m has 
a strong impact on query interactions. Let us define 
the interaction level of a mix m as the number of 
distinct query types in m. The maximum number of 
interaction levels possible in the system is num ILs = 
min(T;M). We make sure that our set of 
representative mixes contain roughly equal number of 
samples for all interaction levels in 

 

Sampling the space of possible query interactions is 
the first step towards modeling the effect of these 
interactions on performance. The next step is to fit a 
statistical model to the observed performance in the 
samples. Our goal is to obtain a function for each 

query type  of the form 

 where 

represents the statistical model. The form of 

 depends on the type of model that we use (the 
model structure). There are many well-known model 
structures, such as linear regression, regression 
trees, locally weighted linear regression, and 
Gaussian processes. 

The choice of model structure impacts model 
accuracy, but if the training data is representative, 
then a good model can typically be found easily. In 
our work, we use Gaussian processes [10] since we 
found them to be a good model structure that is 
accurate for a broad spectrum of query mixes.  

Workload Simulator: To estimate the completion time 
of a given workload, we use a workload simulator that 
simulates the changing query mixes during workload 
execution. To predict these changing query mixes 
and estimate the time that each mix will run for, the 
workload simulator uses the interaction-aware 
performance models built in our off-line modeling 
phase. From the run times of the mixes, the simulator 
estimates the completion time of the entire workload. 

We consider the execution of the workload as a 
sequence of mixes of M queries each, where M is the 
multi-programming level of the system. These mixes, 
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which we call workload phases, change when one 
query finishes and another starts. 

The simulator tracks the fraction of total work 
completed by each query in each phase. Consider a 

query instance, qj , of type  This query instance 
will start with the start of some workload phase, and 
this workload phase would be query phase 1 for this 
query instance. The query will execute through 
different workload phases until it completes all the 

work it needs to perform. Let  be the fraction of 
qj ’s work completed in its query phases 1 to i. When qj 

starts, its and qj is done when its 

We define the following recurrence 
relation to keep track of wcij through the different 
query phases: 

 

The fraction of qj ’s work completed up to query phase 

i-1 is  and the remaining work after phase 

i - 1 is  The fraction of this 
remaining work that is completed during query phase i 

is where li is the length of phase i and 
aij is the predicted remaining completion time of query 
instance qj when it executes in the query mix of phase 
i. If qj continues executing in this mix, it would finish in 
time aij . Since phase i will end in time li, qj will only 

complete  of its remaining work in this phase. 

To estimate aij , the simulator uses the performance 
model to obtain the estimated completion time of qj in 

the mix of phase i, This is the time required for 
qj to execute from start to finish in this mix. Since qj 

has already completed  of its work, the 

simulator multiplies the estimate  by 

 

 

 

To estimate li, the length of phase i, we observe that 
phase i will continue until one of the running queries 
finishes, at which point the simulator will transition to 
phase i+1. Thus, phase i will end at the earliest time a 
query finishes. That is,  

 

In phase i, the simulator uses Equation 1 to update the 
work completed for all queries running in this phase. 
After this update, some queries will have 

and these queries are finished and 
removed from the mix. The next queries in the 
workload will take their place to start phase i + 1. In 
phase i + 1, the query mix is different from the one in 
phase i, so the simulator uses Equation 2 to 

recompute the estimated remaining time for 
all queries in the mix. The simulator then estimates the 
length of phase i+1 using Equation 3. The simulator 
then transitions from phase i+1 to phase i+2, and this 

continues until all  workload queries are 
executed. 

The simulator estimates the completion time for the 
whole workload, LW, as the total length of all the 
workload phases:  

 

III. EXPERIMENTS 

Our experiments are run on a machine with dual 
3.4GHz Intel Xeon CPUs and 4.0GB of RAM running 
Windows Server 2003. The database server we use 
is DB2 version 8.1. We use the TPC-H database with 
scale factors 1GB and 10GB. The buffer pool size of 
the database was set to 400MB and 2.4GB for the 
1GB and 10GB databases, respectively. We use all 
22 TPC-H query types except for Q15 which creates 
and drops a view. We generate different workloads 
for our experiments by varying the database size, the 
number of query types, the arrival order of the 
queries, the MPL, and the scheduling policy. Some 
workloads use all 21 TPC-H query types, while 
others use the 6 or 12 longest running query types. 
To vary the arrival order of the queries in the 
workloads, we generate each workload by going 
over the different query types in a round-robin 
fashion and placing B instances of each query type 
in the arrival queue, until all queries are in the queue. 
By varying B, we vary the skew in the arrival order. 
For some workloads, we use First Come First 
Served as the scheduling policy and for others we 
use Shortest Job First. In total, we generate 90 
different workloads with actual completion times 
ranging from 30 minutes to more than 5 hours. Our 
metric for evaluating the accuracy of completion time 
prediction for a given workload is the relative error in 
predicted completion time, defined as: 

 where pred is the 
predicted and act is the actual completion time. To 
build the performance models required by our 
workload simulator, we 
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collect samples and train a Gaussian processes model 
using the Weka data mining toolkit [11] . 

Figure 3 shows the cumulative frequency distribution 
of the relative error in prediction for the 90 workloads 
used in our experiments. (A cumulative distribution 
towards the upper-left corner represents lower error 
than one towards the lower-right corner.) The figure 
shows the error for two cases. In one case, we use 
performance models trained on 5T samples and in the 
other we use models trained on 10T samples (recall 
that T denotes the number of query types). Thus, for 
21 TPC-H 

query types, we collect no more than 105 sample 
mixes in the case of 5T, and no more than 210 sample 
mixes for 10T. 

From Figure 3, we can see that the prediction errors in 
case of 5T training samples are less than 20% about 
80% of the time. If the DBA has a larger sampling 
budget and is willing to collect up to 10T samples, then 
the overall accuracy improves to the point where the 
prediction errors are less than 20% around 90% of the 
time. These end-to-end results show that our 
sampling, modeling, and workload simulation 
algorithms result in accurate and robust predictions 
across a wide range of workloads. The DBA can now 
make highly 

 

Fig. 3. Prediction error across all workload runs for 
5T and 10T training Samples 

accurate predictions for future workloads in her 
database by collecting a small number of samples just 
once (which can be done along with initial system 
setup and tuning). 

IV. CONCLUSION 

DBAs in a business intelligence setting often need to 
predict the completion time of different batch 
workloads. In this paper, we present an approach for 
predicting workload completion times that takes into 
account the effect of interaction among concurrently 

running queries. This approach relies on: (1) 
experiment driven performance modeling, and (2) a 
workload simulator that uses the performance models 
to simulate the execution of a workload and thereby 
predict its completion time. 

An experimental evaluation of our approach 
demonstrates that it can predict completion times with 
a high degree of accuracy across a broad spectrum of 
workloads. 
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