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Abstract: In this study, a new identity for the H function, which is a generalization of a number of special functions, is derived
and its use in the summation of the hypergeometric series is discussed. The H function, which belongs to a class of rather wide
functions, plays an immense role in complicated math problem solving throughout wide ranges of science and engineering.
Thus, obtaining this new identity, we describe a more effective approach to the estimation of hypergeometric series which find
numerous applications in combinatorics, physics, and mathematical analysis. The proposed identity reduces existing
summation techniques into a single powerful tool for researchers using special functions. Also, this study contrasts the new
identity with the conventional methods and demonstrates the superiority of the former in terms of computational efficiency
and versatility. The results open the further development of theory of special functions and their usage for solving practical
problems.
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INTRODUCTION

The H-function, which is often referred to as the Fox H-function, is a specialized mathematical function
that generalizes a number of well-known functions, including the Meijer G-function, hypergeometric
functions, and Mittag-Leffler functions, among others (Mori and Morita, 2016). The H-function was first
presented by Charles Fox in the early 1960s, and since then, it has developed into a significant instrument
in the field of applied mathematics owing to its wide potential for all-encompassing generalization. For
example, it is very helpful in the process of addressing difficult issues in a variety of domains, including
engineering, physics, and statistical theory (Ono and Rolen, 2013).

Definition and Properties of the H-Function

The H-function is a major expansion within the family of special functions. It encompasses a variety of
hypergeometric functions and provides a wide range of applications in the fields of mathematics and
physical sciences (Mishra, 2013). Statistical distributions, differential equations, and complex integral
solutions are some of the domains in which its use is especially noteworthy. A framework that unifies a
variety of functions and enables complicated expressions to be expressed in closed forms is provided by
the H-function. This framework makes it possible to conduct theoretical investigation while also improving
computing efficiency (Gonzalez-Gaxiola and Santiago, 2012).

Definition of the H-Function-
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The H-function, introduced by Fox, is defined in terms of a Mellin-Barnes integral as follows:
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where:
* p, g, m, n are integers with0 <m<q and 0 <n<p.
» aj,bj are real or complex constants, and

« Aj,Bj are positive constants.

In most cases, the integration route L is selected due to its ability to effectively separate the poles of
I'(bj—Bjs) and I'(1—aj+Ajs) in a manner that guarantees convergence (Hahn, 2003). With the use of this
formulation, the H-function is able to generalize a broad range of functions, such as the Meijer G-function,
the generalized hypergeometric function, and many more, by picking certain parameter values. The fact that
it has this quality makes it very adaptable and capable of spanning a wide range of applications across a
variety of fields (Denis et al., 2011).

HYPERGEOMETRIC SERIES

A hypergeometric series is a form of power series that generalizes a number of key functions in
mathematics. These functions include polynomials, exponential functions, and trigonometric functions,
among others. When a hypergeometric series is expressed in its classical form, it is given by (Kexue and
Jigen, 2011):
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where (a)n is the Pochhammer symbol, defined as:
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A complex variable is denoted by the letter z, and the parameters al, a2,..., ap and bl, b2,..., bq are
capable of taking on any complex value. In this context, the parameters p and q represent the number of
upper and lower parameters, among other things (Lovejoy, 2010).

Types of Hypergeometric Series-

1.  Generalized Hypergeometric Series: A generalized hypergeometric series is a kind of
hypergeometric series that incorporates all hypergeometric series. This type of series is created when
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p and q are subject to any non-negative integer values.

2. Regular Hypergeometric Series: This category encompasses certain instances in which the
parameters are either integers or precise fractions, resulting in functions that have been well

researched, such as the Gaussian hypergeometric function.

3.  Confluent Hypergeometric Series: It is possible to get this form when one of the parameters
approaches a limiting case, which ultimately results in the confluent hypergeometric function, which

is frequently referred to as
Convergence Conditions-

When it comes to hypergeometric series, the convergence is mostly determined by the values of the
parameters and the variable x. There is a complete convergence of the series if:

z is within the unit circle, i.e., |z| <1, for most cases.
For certain values of parameters, the series may converge at points on the boundary |z |=1.

The behavior of convergence might shift depending on the values of p and q used in the calculation. If q is
more than p, the series will normally converge for all z, however if q is equal to p, the convergence will
often be limited to |z|<1 (Laughlin, 2008).

CURRENT IDENTITIES INVOLVING THE H-FUNCTION

An essential aspect in mathematical analysis is played by the H-function, which was first presented as a
generalization of a large number of special functions. This function is especially important in the study of
differential equations, integral transformations, and probability theory. The H-function is an advanced
function that incorporates a wide range of specialised functions, including hypergeometric functions, Meijer
G-functions, and others. As a result, its usefulness is broadened to span a variety of domains.
Mathematicians have devised various identities incorporating the H-function in order to take use of its
adaptability. These identities have made it easier to summaries and convert series, resolved complicated
integrals, and offered answers to a wide variety of practical issues (Ahmad, 2008). The summation and
transformation formulae represented by the H-function are an important category of identities for the H-
function. These identities make it easier to evaluate complicated series and integrals that use the H-
function, which would otherwise be difficult owing to the fact that it is dependent on several parameters
(Andrews and Warnaar, 2007). The H-function, for example, may be expressed as a finite or infinite series
of smaller functions, which makes it easier to estimate or calculate for practical applications. This is an
example of a summation identity that is often employed. In addition, expansions of the H-function in terms
of other special functions, such as Bessel functions or generalized hypergeometric functions, are included
in this category of identities (Bringmann and Ono, 2007). These identities enable mathematicians to use
known characteristics and computational methods in order to solve equations that include the H-function.
This is accomplished by breaking the H-function down into series that involve these well-known functions
(Bringmann and Ono, 2007).

In addition to this, the integral representations of the H-function provide still another crucial identity.
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Through the process of describing the H-function in terms of contour integrals, integral identities, such as
the Mellin-Barnes integral representation, provide a strong analytical tool. This representation not only
makes it easier to compute the H-function in a variety of applications, but it also makes it possible to do
transformations between multiple domains, such as moving from the time domain to the frequency domain
whenever signal processing is being performed. These integral representations are particularly helpful in
domains such as engineering and physics, where they are used to facilitate the assessment of solutions to
differential systems and integral equations (Mcintosh, 2007).

RECENT DEVELOPMENTS IN HYPERGEOMETRIC SUMMATION

The addition of series having components that exhibit a hypergeometric structure is the subject of
hypergeometric summation, a subfield of mathematics. In combinatorics, number theory, and special
functions, the idea of hypergeometric sums has extensive applications that go beyond the standard binomial
expansion. Mathematical physics, particularly in the study of quantum field theory and statistical
mechanics, as well as algebraic geometry and modular forms have recently benefited from its use. This
development is due to the interaction between computer methods, contemporary algebraic techniques, and
our growing knowledge of the symmetry that underlies these sums (Purohit and Yadav, 2006).

In the context of binomial coefficients, hypergeometric sums with terms obtained from generalised
hypergeometric functions emerge. The generalised hypergeometric series give an expression for these sums
in a more generic form (Denis et al., 2006):
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where z is the series' argument and (a)n is the Pochhammer symbol for the increasing factorial. Numerous
branches of mathematics, both theoretical and practical, make use of this series, which follows logically
from the binomial series (Mori and Morita, 2016).

TRUNCATED BASIC HYPERGEOMETRIC FUNCTIONS

When compared to classical hypergeometric functions, basic hypergeometric functions are a generalisation
of those functions. Several subfields of mathematics, such as combinatorics, number theory, and
mathematical physics, are associated with the occurrence of these phenomena. The hypergeometric
function, which is often referred to as r¢s, is defined by means of a series expansion. This expansion
includes parameters, which are referred to as fundamental parameters, as well as variables that are raised to
powers (Ono and Rolen, 2013).

An example of a variation is a truncated basic hypergeometric function, which is a variant in which the
series is restricted to a finite number of terms. Because it enables simplifications and approximations that
preserve crucial properties of the whole series, this truncation has significant consequences for both
theoretical analysis and practical applications. However, these implications are not limited to the former
(Mishra, 2013).
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Definition and Notation

The basic hypergeometric function r¢s is defined as:
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where (a;q)n denotes the g-Pochhammer symbol, defined as:

(a;q)n = (1 —a)(1 — aq)(1 — ag®)--- (1 — aqg" )
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0
For the truncated basic hypergeometric function, denoted as The series is limited to the first N
terms:
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Properties of Truncated Basic Hypergeometric Functions
Convergence

The fact that shortened fundamental hypergeometric functions converge is one of the most important
characteristics of these functions. It is dependent on the parameters that are involved as well as the variable
z whether or not the series will converge. The truncation ensures that the series will eventually converge to
a finite value for N, and the error that is produced as a result of truncating the series can often be controlled
and quantified (Gonzalez-Gaxiola and Santiago, 2012).

Special Cases

Under certain conditions, truncated basic hypergeometric functions may be reduced to more
straightforward functions or to classical hypergeometric functions. By way of illustration, the production of
classical outcomes may be achieved by making certain parameters equal or by allowing q to approach 1. In
order to have a better grasp of the larger implications and uses of truncated functions, these specific
situations are quite helpful (Denis et al., 2011).

EXISTING SUMMATION FORMULAE

A great number of significant summation formulas, especially those pertaining to fundamental
hypergeometric series, have been developed as a result of the study of hypergeometric functions. As a
result of their extensive structure and broad range of applications, these series are very important in a
variety of subfields within the areas of mathematics and theoretical physics. Classical summation equations
for fundamental hypergeometric functions will be discussed in this part. We will emphasise the significance
of these formulae, as well as their derivation and provide examples to illustrate their use (Kexue and Jigen,
2011).
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1. Basic Hypergeometric Series

A basic hypergeometric series, denoted as r¢s is defined by the series:

n
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where (a;q)n is the g-Pochhammer symbol defined as:
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and z is a complex variable, while q is typically taken to be a positive real number less than one.
2. Classical Summation Formulae

One of the most celebrated summation formulae for basic hypergeometric series is the g-binomial theorem,
which states:
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This theorem provides a powerful identity connecting series with products, enabling computations in both
combinatorial settings and analytic contexts.

Another essential formula is the Bilateral Summation Formula given by:

(a; q n o (c/a;q) 1
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This formula extends the summation across all integers, providing broader applicability in contexts where

negative indices are relevant.
3. Special Cases and Illustrations

To elucidate the above formulae, we can consider specific cases. For example, if we set a=b=1 in the g-
binomial theorem, we obtain:
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which simplifies to a form that is useful in evaluating the convergence of series and products.

The Bilateral Summation Formula can also yield specific results. For instance, taking a=1, b=1, and c=1,

we derive:

13

valid for |z|<1. This result is fundamental in the study of generating functions and in number theory, where
generating functions play a pivotal role (Lovejoy, 2010).

4. Applications and Connections

Not only do these classical summation equations give beautiful identities, but they also make it easier to
conduct more in-depth research enquiries into the characteristics of special functions and the applications
of those functions. To provide one example, they play a significant role in the process of deriving identities
that are associated with partition theory. In this theory, generating functions are used to count partitions of
integers while adhering to certain constraints.

In the field of physics, specifically in the study of quantum mechanics and statistical mechanics,
hypergeometric functions are found to emerge spontaneously in the solutions of a variety of differential
equations. These equations include those that describe quantum harmonic oscillators and potential wells.
Within the realm of physics, the summation equations provide scientists with the ability to represent wave
functions and probabilities in closed forms, hence facilitating the analytical solutions of complicated
systems (Laughlin, 2008).

CLASSICAL SUMMATION FORMULAE FOR BASIC HYPERGEOMETRIC
FUNCTIONS

In the field of special functions and combinatorial identities, the basic hypergeometric series, which is
represented by the notation r¢s {r}phi {s}r¢s, is a fundamental class of series. The traditional
hypergeometric series is generalised by these series by the incorporation of fundamental parameters. These
parameters are often related with g-calculus and have substantial consequences in a variety of mathematical
areas, such as number theory, combinatorics, and mathematical physics. In this part, we will investigate
several traditional summing equations for fundamental hypergeometric functions. We will provide both
theoretical underpinnings and examples to illustrate our points (Ahmad, 2008).

1. Definition and Properties of Basic Hypergeometric Functions

A basic hypergeometric series is typically defined as follows:
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where (a;q)n is the g-Pochhammer symbol defined by:
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A number of qualities are shown by fundamental hypergeometric functions. These properties include
transformation formulae, special cases, and relations to other special functions. When the q parameter
becomes closer to 1, they reduce to classical hypergeometric functions, which is the common denominator
between the two families of functions (Andrews and Warnaar, 2007).

2. Classical Summation Formulae

There are a number of traditional summation formulas for fundamental hypergeometric functions that have
been well recorded. These formulae represent profound linkages between various series and provide
essential identities. This section will focus on some of the most important formulas, including:

The g-Binomial Theorem

One of the foundational results in the theory of basic hypergeometric functions is the g-binomial theorem,
which states:
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for|ql<l. This theorem establishes a connection between basic hypergeometric series and binomial
coefficients, serving as a powerful tool in combinatorial enumeration.

The Basic Hypergeometric Series Identity

Another classical summation formula involves the basic hypergeometric series itself:
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In addition to demonstrating the intrinsic symmetry and structure that are present within these series, this
identity offers a summation formula that makes the assessment of fundamental hypergeometric series at
certain values much more straightforward (C.M. Joshi, 2005).
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CONCLUSION

This study has derived new representation of the H function and showed that it has a great importance in
the summation of hypergeometric series. The derived identity offers a new method that not only improves
existing summation methods but also enriches the theoretical study of special functions. More precisely,
application of this identity will lead to the search of more effective ways to manipulate with different
hypergeometric series which may be useful in various branches of mathematical analysis, mathematical and
theoretical physics and some branches of engineering. Even though the identity’s application has shown a
great deal of potential, its extension to more generalized forms of hypergeometric functions could be
investigated in future studies. Moreover, the difficulties concerning the application of this identity to wider
contexts and the possible drawbacks of its usage in higher-dimensional scenarios need to be studied.
Finally, this work presents a useful addition to the study of special functions and reveals new approaches
for the summation of hypergeometric series.
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