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Abstract — The theory of graphs is one of the few fields of mathematics with a definite birth date. Graph
theory is considered to have begun in 1736 with the publication of Euler’s solution of the Konigsberg

bridge problem. Any mathematical object involving points and connections between them may be called
a graph. A graph G consists of a nonempty set V (G) of objects called vertices and a (possibly empty) set
E(G) of two element subsets of V (G), called edges. The set V (G) is called the vertex set of G and E(G) its
edge set. The number of vertices in a graph G is called its order, and the number of edges is its size. A

graph of order p and size q is called a (p, q)-graph.
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INTRODUCTION

It has become a tradition to describe graphs by means
of diagrams in which each element of the vertex set of
the graph is represented by a dot and an edge e = uv
is represented by a curve joining the dots that
represent the vertices u and v. A parameter that
appears often when studying graphs is the degree of
vertex. The degree of a vertex u of a graph G, denoted
by deg G, or simply by deg u or d(u), if the graph G is
clear from the context, is defined as d(u) = | {v/uv 2
E(G)} |. A vertex v of a graph G is called even, if its
degree is even and odd, if its degree is odd. Also, if
deg v =0, v is called an isolated vertex, and if deg v =
1, it is called an end vertex. Also, if e = uv is an edge
of a graph G such that either degu =1 ordeg v = 1,
then e is called a pendant edge of G.

Two graphs are said to be isomorphic if they have the
same structure, and at the most, they differ in the way
their vertices and edges are labeled, or in the way they
are drawn.

The complement G of a graph G has V(G) as its vertex
set, but two vertices are adjacent in G if and only if
they are not adjacent in G. A graph and its
complement are shown in Figure.

The graphs Kp are called totally disconnected, and
are regular of degree 0. A self-complementary graph
is one which is isomorphic to its complement. A self-
complementary graph is shown in Figure .

We also discuss here those operations on graphs
that are used in this thesis. In all the definitions
follows, we assume that, graphs G1 and G2 have
disjoint vertex sets V1 and V2 and their edge sets as
E1l and E2 respectively. The union of G1 and G2,
denoted as G=G1 E G2 hasV=V1EV2andE =
E1l [ E2. Join of G1 and G2, as defined by Zykov [31],
denoted G1+G2, the vertex set consists of V = V
(G1)[V (G2) and the edge set, all edges obtained by
joining V1 with V2. In particular, Km,n = Km + Kn.
These operations, namely union and join of two
graphs G and H are illustrated in Figure 1.4 and 1.5
with G = K3 and H = P4.
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For any connected graph G, we write nG for the graph
with n components, each isomorphic to G. Then every
graph can be written in the form S ; nG; with G;
different from Gj for i 6= j. To define the cartesian
product G1 x G2, consider any two vertices u = (ul,
u2) and v =(vl, v2) inV =V1 x V2. Then u and v are
adjacent in G1 x G2 whenever ul = vl and u2v2 2
E(G2) or u2 = v2 and ulvl 2 E(G1). The cartesian
product of G1 = P2 and G2 =P2 is shown in Figure .

(a,e) (b,c)

Q

(a,d) (b,d)

Let graph G has at least one edge. The line graph
L(G) of G, has E(G) as its vertex set with two vertices
of L(G) are adjacent whenever the corresponding
edges of G are adjacent. The line graph of K4 is
shown in Figure 1.11. We write L2(G) = L(L(G)), and in
general Ln(G) = L(Ln-1(G)).

1
a 1 b 2
6
4 2
A > 3
c 3 d
4

Ky L(Ky)

The distance d(u, v) between two vertices u and v in G
is the minimum length of a path joining them if any;
otherwise d(u, v) = 1. A shortest u-v path is called a
u-v geodesic. The diameter d(G) of a connected graph
G is the length of any longest geodesic.

A Study on Theory of Graphs and Its Approaches [|l§

REVIEW OF LITERATURE:

A classical subject of metric graph theory that are
related to geometric questions are that of distance
regular graphs which are intimately related with
combinatorial designs and finite geometries. The study
of low-distortion embeddings of graphs and finite
matric spaces into 12 or I1 spaces with numerous
applications in the design of approximation algorithms
was initiated by Lineal et.al. [9].

In the mathematical field of graph theory, the
hypercube Qn is a regular graph with 2n vertices,
which corresponds to the subsets of a set with n
elements. Two vertices labeled by subsets W and B
are joined by an edge if and only if W can be obtained
from B by adding or removing a single element.

Geometric representations of graphs have been much
studied for the insight they provide into the graph
algorithms, graph structure, and graph visualization.
Linial et.al. [9] considered the following representation
problem: for which unweighted undirected graphs can
we assign integer coordinates in some d-dimensional
space Zd, such that the distance between two
vertices in the graph is equal to the L1-distance
between their coordinates? They (Linial et.al. [9])
called the minimum possible dimension d of such an
embedding (if one exists), the lattice dimension of the
graph, and shown that the lattice dimension of any
lattice-embeddable graph may be found in polynomial
time. It is also shown that the lattice dimension of any
tree is exactly dj, e, where |

denotes the number of leaves of the tree.

Any I-length path can be viewed as a sub-graph of the
hypercube {0, 1}l by mapping its vertices to the points
where superscripting stands for repetition of
coordinates. Similarly, finite portions of the integer
lattice can be mapped isometrically to a hypercube {0,
1}dl, by applying the above embedding separately to
each lattice coordinate. The graphs with finite lattice
dimension are exactly the isometric hypercube sub-
graphs, also known as partial cubes.

The partial cube representation of a graph is unique
up to cube symmetries and, a polynomial time
algorithm for finding such representations is known
from the work of Djokovic [5]. Partial cubes arise
naturally as the state transition graphs of media,
systems of states and state transitions studied by
Falmagne et. al. [7], that arise in political choice
theory and that can also be used to represent many
familiar geometric and combinatorial systems such as
hyper-plane arrangements.

The integer lattice can be viewed as a cartesian
product of paths; instead, one could consider
products of other graphs. Thus, for instance, one
could similarly define the tree dimension of a graph to
be the minimum k such that the graph has an
isometric embedding into a product of k trees. The
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graphs with finite tree dimension are again just the
partial cubes. Chepoi et. al. [4] showed that, certain
graph families have bounded tree dimension, and
used the corresponding product representations as a
data structure to answer distance queries in these
graphs. Recognizing graphs with tree dimension Kk is
polynomial for k = 2 [5], but NP-complete for any k > 2
[11].

Let (Vn, d) be a distance space where d is rational
valued. Then, (Vn, d) is I11-embeddable if and only if
(Vn, d) is hypercube embeddable for some scalar. Let
d be a distance on Vn that is embeddable and takes
rational values. Every integer for which (Vn, d) is
hypercube embeddable is called a scale of (Vn, d).
They [12] also called d is hypercube embeddable with
scale . The smallest such integer is called the
minimum scale of (Vn, d) and is denoted by d. Deza
et.al [12] also established the following Lemma.

There exists an integer such that d is hypercube
embeddable for every embeddable distance d on Vn
that is an integer valued. Deza et.al [12] also initiated
to study the graphs whose path metric admits some
properties of the above mentioned embedding and
accordingly they defined graphs. A graph G is called a
graph, if its path metric dG is isometrically
embeddable. Similarly, a graph G is called a
hypercube embeddable graph, if its path metric dG is
isometrically hypercube-embeddable. Equivalently, a
graph G is said to be hypercube embeddable if its
vertices can be labelled with the Hamming distance
between their labels.

RESEARCH METHODOLOGY:

A graph G = (V,E) is called a bitopological graph if
there exist a set X and a set-indexer f on G such that
both f(V ) and f _(E) [ ; are topologies on X. The
corresponding set-indexer is called a bitopological set-
indexer of G. We prove the existence of bitopological
set-indexer. We give a characterization of bitopological
complete graphs. We define equi-bitopological graphs
and establish certain results on equi-bitopological
graphs. We identify certain classes of graphs, which
are bitopological and define bitopological index (G) of
a finite graph G as the minimum cardinality of the
underlying set X.

Given a graph G = (V,E), we can relate it to different
topological structures. In 1967, J. W. Evans et.al [8]
conceived this idea and he proved that there is a one
to one correspondence between the set of all
topologies on a set X with n points and the set of all
transitive digraphs with n points. He established his
results as follows. Let V be a finite set and T be a
topology on V . The transitive digraph corresponding to
this topology is got by drawing a line from u to v, if and
only if, u is in every open set containing v. Conversely
let D be a transitive digraph on V ; the family B = {Q(a)

:a E V }forms a base for a topology on V , where Q(a)
={a} [{b EV : (b, a) E E(D)}. In 1968 T.N. Bhargav
and T.J. Ahlborn [7] analysed the topological spaces
associated with digraphs. According to them a subset
A of V (D) is open if and only if for every pair of points
i, EVwithjin AandinotinA, (i, j) is not a line in D.
Sampathkumar [15] extended this results to the case
in which the point set is infinite. Sampathkumar et.al
[16] also investigated the topological spaces
associated with signed graphs and semigraphs. Let S
= (V,E) be a signed graph. A subset A of V is an open
set in the positive E-topology on S denoted by S if and
only if u E A, uv E E+(S) implies that v E A. Similarly
he defined negative E-topology (S). He defined the
topology V on the vertex set V (D) of a disemigraph D
= (V,E) as follows: A subset S of V (D) is open
whenever u E S and v E V (D) such that vu is a
partial arc, thenv E S.

Hypergraph theory is something different and much
more generalized concept of graph theory. Given a
set V of vertices, an edge of a simple graph on V is a
set of two vertices, while an edge of a hypergraph on
V is any subset of V . The theory of hypergraphs
popularized and enriched by many contributions of
Berge [5], [6], is the extension of theorems about
graphs to hypergraphs. The problem is to find a
suitable formulation of the theorems for hypergraphs
in such a way that they contain the graph as a special
case.

Chromatic index of the hypergraph H of dcsl-graph
K7 is eight, equal to the degree of H. Thus, we
strongly believe that the hypergraphs of dcsl-graphs
are graphs which satisfy the coloured edge property.
In general, a hypergraph and its dual hypergraph
need not be isomorphic. But it happens in the case of
1-uniform di-graphs. It is interesting to note that, if (G,
f) is a 1-uniform di-graph then, the hypergraph H; G
and the dual hypergraph of H; G are isomorphic.
Figure give the hypergraph corresponding to 1-
uniform path P6 and Figure depicts its dual graph.
Note that the hypergraphs in Figure
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CONCLUSION:

The theory of isometric set-labeling are rich in theory,
with many applications. The main motivation to study
isometric set-labeling is due to the problem in
communication theory posed by Pierce in 1972. In a
telephone network one wishes to be able to establish a
connection between two terminals A and B without B
knowing that a message is on its way. The idea is to
let the message be proceeded by some “address’ of B,
permitting to decide at each node of the network in
which direction the message should proceed. The
message will proceed to the next node if its hamming
distance to the destination node B is shorter or, at a
constant proportionality distance or, at various fixed
constants of proportionality. The most natural way of
devising such a scheme is by labeling the nodes by
strings of subsets of a set X, which amounts to try to
embed the graph in a dcsl-graph.

Interesting problems and conjectures are identified in
both the dcslgraphs, bitopological graphs and
hypergraph representation of dcslgraphs. They are
already pointed out in the respective chapters.
However, we list below some of the most important
problems which are open for further research and
investigation.

Problem 1. Characterize a dispersible dcsl-graph.

Problem 2. Consider any structure-activity relationship
R of a molecular graph that has been identified to be
well correlated with the Weiner index. Is it possible to
achieve such a correlation using MWeiner index for a
low cardinality dcsl-sets X as possible?

Problem 3. For any dcsl-graph G, the dispersivity of
(G) of G is the least cardinality of a ground set X, such
that G admits a dispersive dcsl. Also, find Kn.

Problem 4. Find the necessary condition for a graph to
be 11-embeddable, k-uniform dcsl-graph.
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