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INTRODUCTION  

The goal of mesh generation is to decompose a 
geometric domain into simple elements. For example, 
the square on the left in Figure 1 is decomposed into 
triangles. A discrete description of a space allows for 
discrete approximations to functions on that space. 
Thus, mesh generation is ubiquitous in physical 
simulation where it allows for the numerical solution to 
partial differential equations. 

 

Figure 1: Left: The Delaunay triangulation of a set 
of points. The triangulation decomposes the 

convex closure of the points. Right: The Voronoi 
diagram of the same set of points. The diagram 

decomposes all of R2. 

The Voronoi diagram is dual to the Delaunay 
triangulation. It decomposes the plane into polygons 
called Voronoi cells, one for each q E  P, such that the 
Voronoi cell of q is the set of all points whose nearest 
neighbor in P is q. Figure 1 shows a simple example of 
a Delaunay triangulation and a Voronoi diagram on the 
same set of points. There is a natural way to define 
Delaunay triangulations and Voronoi diagrams in 
higher dimensions. One advantage of using the 
Delaunay triangulation for mesh generation is that it 
gives a unique decomposition of space defined only by 
the set of vertices. Thus, we will speak primarily about 
point sets and the decomposition will be secondary, 
used mainly for definitions and proofs. 

Let P be a set of n points in R
d
. A mesh generation 

algorithm will output a superset M of P such that the 
Voronoi cells have aspect ratio at least some constant. 
That is, the cells (modulo some on the boundary) 

should all be sufficiently “round”. The set M along 
with the Delaunay triangulation of M is called the 
mesh. The extra points added are called Steiner 
points. The size of the mesh is its number of points, 
|M|. This is to be distinguished from the complexity of 
Vor M, which is the number of cells in the Voronoi 
diagram of M. 

We will focus on three main goals of mesh 
generation: 

1. The mesh should conform to a set of input 
points. That is, every input point should 
appear as a vertex in the output. 

2. The mesh should satisfy some quality 
condition. That is, every cell in the output 
should be geometrically “nice”, where several 
different metrics of quality are used in 
practice. 

3. The mesh should have optimal size. Up to 
constant factors, no other conforming, quality 
mesh can have fewer vertices. 

For many meshing applications, the conforming 
condition is extended to also include higher order 
features such as edges, faces, or even piecewise-
smooth complexes. In this thesis, we limit the input to 
points, which is most relevant when using meshes to 
do data analysis; the input points are the data. 

There are several metrics used to measure the 
quality of a mesh. For example, in 2D triangulation, 
the measure of the smallest angle is commonly used. 
The idea behind these quality metrics is to give a 
purely geometric condition that can give guarantees 
about how well a mesh will work for a given 
application. For example, the quality a mesh 
influences the quality of a solution in finite element 
analysis. Much work has been done on mesh quality 
measures for discussion on mesh quality conditions 
relevant to Delaunay meshing. For triangulations and 
other simplicial meshes, the ratio of the circum radius 
to the shortest edge may be used in place of the 
angle condition. A similar notion of quality may be 
defined on the Voronoi diagram. It is called the 
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aspect ratio of the Voronoi cells and is illustrated in 
Figure 3. 

These quality conditions may leave some simplices 
called slivers which are known to be problematic in 
physical simulation. However, there are many 
theoretical and practical approaches to dealing with 
slivers in meshes [CDE

+
00, ELM

+
00, Li00, LT01, 

EG02, Li03, Lab06]. Despite this wealth of research 
directed at removing slivers, it remains a major 
research problem in mesh generation. 

Figure 4 shows an example of a set of points, its 
Voronoi diagram, and the Voronoi diagram after 
Steiner points were added. Note that the Voronoi cells 
of the input points are long and skinny, whereas the 
output Voronoi cells are round. 

The third goal of size optimality requires lower bounds. 
To prove these lower bounds, we use the Ruppert 
local feature size fP : R

d
 -> R20, defined as the distance 

to the second nearest 

 

Figure 2: The ratio of the radius of a triangle to the 
length of its shortest edge is a commonly used 

measure of mesh quality. 

 

Figure 3: The aspect ratio of a Voronoi cell is 
illustrated with two examples. Note that although 
the Voronoi cells are geometrically similar, they 
have different aspect ratios because the vertices 

are not in the same relative location within the 
cells. 

Point of P. Ruppert’s seminal result on the analysis of 
2-dimensional Delaunay refinement reduces the 
problem of bounding the mesh size to a geometric 
problem of bounding the integral of a certain measure 
over the input domain Ώ. His method generalizes 
naturally to R

d
 to give the following. 

 

Note that the statement here contains a big-θ and not 
a big-O. Consequently, the analysis doesn’t 

require computing this integral, we only need the 
upper bound because the matching lower bound 
guarantees the result will be “optimal”. This may seem 
a bit strange with respect to traditional analysis of 
algorithms. While it does yield a guarantee of 
“optimality”, it does not yield a simple description of the 
asymptotic complexity as a function of n. That is, we 
don’t get a clear explanation of what optimal means. In 
fact, the bound cannot be stated directly as a function 
of n because the integral depends on geometric 
properties of the input P and the input domain. 

We could try to add another parameter to capture this 
geometric structure of the input. For example, letting Δ 
denote the spread of the input (the ratio of the largest 
to smallest pair-wise distances), it is not difficult to 
prove that |M| = O (n log Δ). 

 

Figure 4 : An example of point meshing 

This is a conceptual improvement in that it may be 
easier to think about and write down such a bound, 
but it adds a good deal of slack. There are simple 
examples such that |M| = O(n). 

That is, the contribution of each point is the change in 
the log of its feature size before and after insertion. 
The fraction θi is close to 1 when pi is roughly 
equidistant from its nearest and second nearest 
neighbors among the first i − 1 points. We say pi is $-
medial if $i is larger than some constant θ. When θ is 
understood, we just say pi is medial. If there exists an 
input ordering so that each pi is medial then the 
output size will be O(n). 

The new bound is asymptotically tight. It also gives an 
important new insight into the way that we analyze 
mesh sizing. It reduces the analysis to finding an 
ordering. For example, to show that an output mesh 
has linear size, it suffices to find a well-paced 
ordering, i.e. one such that each pi is medial. Such an 
ordering is not guaranteed to exist. 

Sometimes, it is possible to turn an analytic tool into 
an algorithm. For example, one could hope to build a 
meshing algorithm that works by explicitly or implicitly 
finding an ordering that maximizes θi. It turns out that 
this is exactly what happens in the Sparse Voronoi 
Refinement (SVR) algorithm of Hudson et al . In SVR, 
the mesh is constructed incrementally. 

An input point is inserted only if it is medial. 
Otherwise, a Steiner point is added. The running time 
of SVR is O(n log% + |M|). Thus, we see a return of 
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the dependence on the spread as a result of the point 
location cost. 

We replace the usual quality condition on the aspect 
ratio of Voronoi cells with a notion of hierarchical 
quality in which the domain is partitioned into a 
hierarchical tree of sets so that although individual 
Voronoi cells may have bad aspect ratio, the union of 
all the cells in a sub-tree does have good aspect ratio. 
This insight strengthens the analogy of Voronoi 
refinement mesh generation with the closely related 
class of algorithms that use compressed quad-trees. 
The result is Net Mesh, the first algorithm to achieve 
optimal O(n log n+|M|) running time for conforming 
mesh generation of point sets. Moreover, Net Mesh 
can return a hierarchical quality mesh of size O(n) in 
O(n log n) time. 

The Ruppert lower bound required us to leave the 
class of bounded aspect ratio Voronoi diagrams in 
order to guarantee a linear size output on all inputs. 
The Net Mesh algorithm can be modified to produce 
Voronoi diagrams in which every cell is fat, the ratio of 
the radii of smallest containing ball and the largest 
contained ball is bounded by some constant. This is 
very close to the usual definition of quality for Voronoi 
diagrams; it only relaxes the requirement that the 
aspect ratio be measured with respect to balls 
centered at the point generating the Voronoi cell. 
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