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INTRODUCTION

The goal of mesh generation is to decompose a
geometric domain into simple elements. For example,
the square on the left in Figure 1 is decomposed into
triangles. A discrete description of a space allows for
discrete approximations to functions on that space.
Thus, mesh generation is ubiquitous in physical
simulation where it allows for the numerical solution to
partial differential equations.

Figure 1: Left: The Delaunay triangulation of a set
of points. The triangulation decomposes the
convex closure of the points. Right: The Voronoi
diagram of the same set of points. The diagram
decomposes all of R2.

The Voronoi diagram is dual to the Delaunay
triangulation. It decomposes the plane into polygons
called Voronoi cells, one for each q E P, such that the
Voronoi cell of q is the set of all points whose nearest
neighbor in P is g. Figure 1 shows a simple example of
a Delaunay triangulation and a Voronoi diagram on the
same set of points. There is a natural way to define
Delaunay triangulations and Voronoi diagrams in
higher dimensions. One advantage of using the
Delaunay triangulation for mesh generation is that it
gives a unique decomposition of space defined only by
the set of vertices. Thus, we will speak primarily about
point sets and the decomposition will be secondary,
used mainly for definitions and proofs.

Let P be a set of n points in R%. A mesh generation
algorithm will output a superset M of P such that the
Voronoi cells have aspect ratio at least some constant.
That is, the cells (modulo some on the boundary)

should all be sufficiently “round”. The set M along
with the Delaunay triangulation of M is called the
mesh. The extra points added are called Steiner
points. The size of the mesh is its number of points,
|[M|. This is to be distinguished from the complexity of
Vor M, which is the number of cells in the Voronoi
diagram of M.

We will focus on three main goals of mesh
generation:
1. The mesh should conform to a set of input

points. That is, every input point should
appear as a vertex in the output.

2. The mesh should satisfy some quality
condition. That is, every cell in the output
should be geometrically “nice”, where several
different metrics of quality are used in
practice.

3. The mesh should have optimal size. Up to
constant factors, no other conforming, quality
mesh can have fewer vertices.

For many meshing applications, the conforming
condition is extended to also include higher order
features such as edges, faces, or even piecewise-
smooth complexes. In this thesis, we limit the input to
points, which is most relevant when using meshes to
do data analysis; the input points are the data.

There are several metrics used to measure the
quality of a mesh. For example, in 2D triangulation,
the measure of the smallest angle is commonly used.
The idea behind these quality metrics is to give a
purely geometric condition that can give guarantees
about how well a mesh will work for a given
application. For example, the quality a mesh
influences the quality of a solution in finite element
analysis. Much work has been done on mesh quality
measures for discussion on mesh quality conditions
relevant to Delaunay meshing. For triangulations and
other simplicial meshes, the ratio of the circum radius
to the shortest edge may be used in place of the
angle condition. A similar notion of quality may be
defined on the Voronoi diagram. It is called the
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aspect ratio of the Voronoi cells and is illustrated in
Figure 3.

These quality conditions may leave some simplices
called slivers which are known to be problematic in
physical simulation. However, there are many
theoretical and practical approaches to dealing with
slivers in meshes [CDE'00, ELM'00, Li0O, LTO1,
EGO02, Li03, Lab06]. Despite this wealth of research
directed at removing slivers, it remains a major
research problem in mesh generation.

Figure 4 shows an example of a set of points, its
Voronoi diagram, and the Voronoi diagram after
Steiner points were added. Note that the Voronoi cells
of the input points are long and skinny, whereas the
output Voronoi cells are round.

The third goal of size optimality requires lower bounds.
To prove these lower bounds, we use the Ruppert
local feature size fp : RY -> R0, defined as the distance
to the second nearest

Figure 2: The ratio of the radius of a triangle to the
length of its shortest edge is a commonly used
measure of mesh quality.

Figure 3: The aspect ratio of a Voronoi cell is
illustrated with two examples. Note that although
the Voronoi cells are geometrically similar, they
have different aspect ratios because the vertices

are not in the same relative location within the
cells.

Point of P. Ruppert’s seminal result on the analysis of
2-dimensional Delaunay refinement reduces the
problem of bounding the mesh size to a geometric
problem of bounding the integral of a certain measure
over the input domain Q. His method generalizes
naturally to R? to give the following.
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Note that the statement here contains a big-8 and not
a big-O. Consequently, the analysis doesn’t
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require computing this integral, we only need the
upper bound because the matching lower bound
guarantees the result will be “optimal”’. This may seem
a bit strange with respect to traditional analysis of
algorithms. While it does vyield a guarantee of
“optimality”, it does not yield a simple description of the
asymptotic complexity as a function of n. That is, we
don’t get a clear explanation of what optimal means. In
fact, the bound cannot be stated directly as a function
of n because the integral depends on geometric
properties of the input P and the input domain.

We could try to add another parameter to capture this
geometric structure of the input. For example, letting A
denote the spread of the input (the ratio of the largest
to smallest pair-wise distances), it is not difficult to
prove that [M| = O (n log A).

Figure 4 : An example of point meshing

This is a conceptual improvement in that it may be
easier to think about and write down such a bound,
but it adds a good deal of slack. There are simple
examples such that [M| = O(n).

That is, the contribution of each point is the change in
the log of its feature size before and after insertion.
The fraction 6i is close to 1 when pi is roughly
equidistant from its nearest and second nearest
neighbors among the first i — 1 points. We say pi is $-
medial if $i is larger than some constant 6. When 0 is
understood, we just say pi is medial. If there exists an
input ordering so that each pi is medial then the
output size will be O(n).

The new bound is asymptotically tight. It also gives an
important new insight into the way that we analyze
mesh sizing. It reduces the analysis to finding an
ordering. For example, to show that an output mesh
has linear size, it suffices to find a well-paced
ordering, i.e. one such that each pi is medial. Such an
ordering is not guaranteed to exist.

Sometimes, it is possible to turn an analytic tool into
an algorithm. For example, one could hope to build a
meshing algorithm that works by explicitly or implicitly
finding an ordering that maximizes 6i. It turns out that
this is exactly what happens in the Sparse Voronoi
Refinement (SVR) algorithm of Hudson et al . In SVR,
the mesh is constructed incrementally.

An input point is inserted only if it is medial.
Otherwise, a Steiner point is added. The running time
of SVR is O(n log% + |[M]). Thus, we see a return of
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the dependence on the spread as a result of the point
location cost.

We replace the usual quality condition on the aspect
ratio of Voronoi cells with a notion of hierarchical
quality in which the domain is partitioned into a
hierarchical tree of sets so that although individual
Voronoi cells may have bad aspect ratio, the union of
all the cells in a sub-tree does have good aspect ratio.
This insight strengthens the analogy of Voronoi
refinement mesh generation with the closely related
class of algorithms that use compressed quad-trees.
The result is Net Mesh, the first algorithm to achieve
optimal O(n log n+|M|) running time for conforming
mesh generation of point sets. Moreover, Net Mesh
can return a hierarchical quality mesh of size O(n) in
O(n log n) time.

The Ruppert lower bound required us to leave the
class of bounded aspect ratio Voronoi diagrams in
order to guarantee a linear size output on all inputs.
The Net Mesh algorithm can be modified to produce
Voronoi diagrams in which every cell is fat, the ratio of
the radii of smallest containing ball and the largest
contained ball is bounded by some constant. This is
very close to the usual definition of quality for Voronoi
diagrams; it only relaxes the requirement that the
aspect ratio be measured with respect to balls
centered at the point generating the Voronoi cell.
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