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Abstract: The study seeks to understand the effect on geometric and topological qualities of certain curves and metal
constructions on the manifold properties by investigating their effects. The research attempts to understand the effects of these
components on curvature, connectivity, and general manifold behaviour by studying geodesics and closed curves inside diverse
metal shapes. The work establishes important connections between curves' intrinsic qualities and metals' structural attributes
by means of sophisticated mathematical methods and computer simulations. The results show that specific metal structure
configurations may change the topology and curvature of the manifolds they are embedded in, which could have implications
for engineering and materials research. The results shed light on the ways in which concrete objects can affect theoretically
abstract geometrical spaces, adding to our knowledge of manifold theory as a whole. This discovery has far-reaching
consequences; it lays the groundwork for the development of new materials with optimised geometric characteristics and paves
the way for fresh uses of manifold theory in engineering. To develop and optimise structural designs, it is crucial to integrate
mathematical theory with material science, as this multidisciplinary approach highlights.
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INTRODUCTION

In differential geometry, CR-submanifolds have been a hotspot for study for the past four decades. In 1978,
A. Bejancu introduced the notion of CR-submanifolds of a Kaehler manifold, which extends to complex
and real submanifolds alike. In this paper, A. Bejancu explored many geometry issues related to CR
submanifolds. Contact CR-submanifolds in Kenmotsu manifolds were subsequently the subject of study by
Atceken et al., who uncovered some intriguing features.

Professor D. E. Blair first proposed the idea of a Killing tensor field in 1971. Many writers have studied the
class of almost contact manifolds first studied by K. Kenmotsu in 1972, which is called a Kenmotsu
manifold (Ratiu, T. 2008).

One specific kind of almost contact metric manifold is called a Kenmotsu manifold, and it is defined by the
fact that (VX¢p)=g(¢pX,Y)étn(Y)pX, This stands for the Levi-Civita relationship ofb. Because of its
unique geometric features, the Kenmotsu manifold is a great place to explore Contact CR-submanifolds and
other submanifold structures. The existence of a CR (Cauchy-Riemann) structure, a naturally occurring
extension of the complex structure in the theory of multiple complex variables to the context of nearly
contact metric manifolds, defines these submanifolds. In particular, the splitting of the tangent bundle TN
into two orthogonal subbundles defines a Contact CR-submanifold N of an almost contact metric manifold
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Meaning (D)SD (Biswas, 2014). Additionally, D divides into D=D1@D2, where D1 represents a
complicated subbundle of D (i.e., (D1)=D1and D2 it is orthogonal to in D (i.e., ¢(D2)SD1. The duality and
interplay of the holomorphic and fully real components of the submanifold's geometry are mirrored by this
splitting. (Ojha, R. H. 2011)

PRELIMINARIES

What if.." M exists as a differentiable manifold with (2n + 1) dimensions. Let

¢, & 1 and g depict a vector field, a Riemannian metric, a |-form, and a tensor

field of type (1,1) on M | and so on. If @, & 1 and g meet all of the

prerequisites:

dE =0, ¢U = —U+7n(U)E,

UK} = IJ n(‘ﬂ) = U! (1 l.)

g (U, V) = g (U, V) —n(U)n (V),
”{Hj =8 {HI‘E} ’ (22)

as long as U and V are vector fields on M subsequently, the framework

(0.£.1.,g) has a metric structure that is almost contact. A (2n+1)-dimensional

bipartite surface M is considered to be an almost contact metric manifold when

coupled with an almost contact metric structure.

LetV represents the link between Levi and Civita on M as well as in the event

that certain criteria are met: (Venkatesha. 2008)

(Vut) V = g (U4, V) € — n(V)eld,
Vit =U - (U,
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(M,¢.€,m.9) ;
after that, the framework known as a Kenmotsu manifold.

Say M is a submanifold submerged in space that is isometrically M What if V

and ﬁ, Riemannian connections on M are denoted by and M | This leads us to

the following formulae for both Gauss and Weingarten:

VuV = hitd, V) + VyV,

(2.4)
And
VuX = VLX — Axld,
(2.5)
A e 1(1-M
while dealing with vector fields U and V in T'(TM) and LR ) , Where V1

displays the typical relationship between T'M, Let h stand for the second basic

form of M in the Kenmotsu manifold and let A be the shape operator ¥
The relationship between the shape operator A and the second basic form h is as

glh(U, V), X) = g(AxlU, V). (2.6)
A submanifold that is isometrically immersed is denoted by M in the Kenmotsu

manifold. For any vector field U that is perpendicular to M, we may deduce

o = 1+ wid, (2.7)

where tU and oU stand for the normal component of and the tangential
component of @U.

A function of t and o its covariant derivative are conveyed by: (Sharma, R.

2009)
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(Vul)V = VitV — IV, VY,

And

(Vyuw)V = ViwY — wVyV.

Just as before, we place for every vector field X that is normal to M
pX = BX + CX, (2.8)

where BX represents the tangential component of ¢X and CX stands for the

normal component.
What follows is an expression for the covariant derivative of B and C:

(VuB)X = VyBX — BV, X,

(VuC)X = VLCX — CVLX.
If the definition of endomorphism t is given by equation (2.7), then it follows
that

g (1, V) + g (U, 1V) = 0. (29)

Definition 2.1. A Kenmotsu manifold has a submanifold represented by M

When this occurs, we say that M is a contact CR-submanifold of M if the

D:p— D, CT,(M)

distribution is differentiable on M that fulfils the given

criteria: Koufogiorgos, T. 2001)
e« TM=DaD', £€D,

e D is an invariant matrix with regard to ®* ¢+ #Pr = Do
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e The  distribution that is  orthogonal and  complements
L .. 1 - 7 , . Gris 2 .
DY :p = Dy € Ty(M) is anti-invariant, ie.

¢Dy C THM), for cachp e M.~

D} =0,
A submanifold M is considered to be fully real if and only if dim D, = 0.

is known as a complicated submanifold of M. Properness is defined as the
absence of complexity and complete realness on a contact CR-submanifold

(Duggal, K. L. 2000).

Consider the case where M is a contact CR-submanifold of M using vector
fields U and V in T(TM). Equation (2.8) is derived using equations (2.3), (2.7),

and the Gauss and Weingarten formulae.

(ﬁu{'-"!:] V = ﬁug‘ﬂ; = {r'}ﬁuv, (2 10)

Or,
g (@, V) — (V) U = VitV + VuwV — ¢V V — oh(U, V).

By contrasting the normal and tangential components of the two sides of the

above equation, we get the following equations:

(Vut)V = Anld + Bh (U, V) + g (14, V) € —n (V) ild, (2.11)

And

(Vuw) V = Ch (U, V) — B (U, 2V) — q(V)ld. (3 12)

M is perpendicular to the structural vector field. Next, we obtain by combining

equations (2.3) and (2.6),

Axf =h(U,£) =0, (2.13)
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to all vector fields U in I'(TM) and all vector fields X in T'(TLM). The result is
that equation (2.11) changes to

(Vut)V = g (tU, V) € —n (V) U, (2.14)

for any vector fields in I'(D)., where U and V are any. Hence, a Kenmotsu

structure on M is what we term the induced structure t (Pastore, A. M. 2004).

Assume that M stands for the contact CR-submanifold in M. Because of this,

we may simplify equation (2.11) to

(V, 1)V = Bh(U, V) + g (tU, V)€ — 1 (V) U, 2.15)

where I'(D) contains vector fields U and V.

A completely geodesic submanifold of M is defined as h = 0, i.e., the second
basic form disappears. If the following equality holds for the Riemannian metric

g and the second basic form h, we say that submanifold M is fully umbilical.
gUVYH =h(U.V),

where H is the vector representing the average curvature. Additionally, the

submanifold M is referred to be minimum if and only if H=0.

Let ¢ stands for the killing tensor field, which is a tensor field of type (1,1),

provided the following conditions are met: (Matsumoto, K. 2007)

Vo) V + (Vv U = 0.
(Vug) V + (Vo) (2.16)

CONTACT CR-SUBMANIFOLD OF A KENMOTSU MANIFOLD WITH
KILLING TENSOR FIELD
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For the contact CR-submanifold in the Kenmotsu manifold with a Killing tensor

field, various intriguing outcomes have been investigated in this part.

Theorem 3.1. Suppose M js a contact CR submanifold of, and is a Kenmotsu

manifold. Mwith Killing tensor field g, then

(ﬁuﬂz’ -} ﬁvd.(} — ﬁ(ﬁup +vv”] = w(ﬁub’ +ﬁv”:] = {ﬁ“wv + ﬁvwlf{} (3 I_)
Proof. The equation (2.10) gives us
(Vud)V = VugV — ¢V V.

If we swap U and V in the above equation, we get

(V) U = Vpgld — $V 4.

By combining the two equations above, we get
(Vup) V + (Vyp) U = VudV — oWy + Vypgld — ¢Vold.
Using equation (2.16) now, we obtain

0= VoV — pVuV + Vudld — ¢Vold. (3.2)

Utilising (2.7), the equation above becomes:
(ﬁulv = ﬁvﬂ] — E-(ﬁuv + ﬁvu] = w(ﬁuv + ﬁvu:] = ﬁuwv + ﬁvwﬂ) 2

Theorem 3.2. Assume that M represents a CR-submanifold in contact with a

killing tensor field. @ of a manifold Kenmotsu M , then

n(V)U +nU)Y =03 3
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(V) wld + 5wV =10.
1(V) () (3.4)
Proof. Equation (2.3) tells us that
(Vugp) V=g (U, V)£ — (V) dld.

When U and V are switched, the previous equation becomes

(Vv) U = —g (84, V)€ — 1 (U) $V.

Now, by integrating the two equations given before, we get
(Vup) V + (V) U = —n (V) U — 1 (U) ¢V

Using the formula (2.16), we obtain

V)0V =0. 3

Applying equation (3.5) to the value of (2.7), we can next compare the normal
and tangential components. I have achieved the intended outcome (Chen, B. Y.

2000).

Theorem 3.3. What if M is a confact CR submanifold of, and is a Kenmotsu

manifold. M when the killing tensor field is present ©. hence, t, the induced

structure, 1mmeets

{V’ut)V t l:v'pt)HI (. (36)

Proof. According to the formula (2.14), we may deduce
(Vut)V = g (4, V)£ — n (V) tU.

After switching U and V in the above equation, we get
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(Wl = g (U, V)& — (U)LY,

We obtain by combining the two equations given above:

(Vul )V + (V)i = —n (ViU — (L) LV,

With the application of (3.3) in the previous equation, the desired outcome has

been achieved. (Golab, S. 2005)

Theorem 3.4. Suppose M s a contact CR submanifold of, and is a Kenmotsu

manifold M when the killing tensor field is present . M is a completely

geodesic manifold if and only if the second basic form h is parallel.

Proof. We obtain by swapping the values of U and V in equation (2.15).
Vbl = BR(U, V) — g(V, iU U)ty.
(Vi) (U, V) gl 1€ —nHd) (3.7)
Equations (3.7) and (2.15) are combined to get us with
(Vi )V + (Nt = 2BR (U, V) — n (V) 4 — n (L) 1V,
It is now possible to obtain by using equations (3.3) and (3.6)
h(U, V) vanishes.

for any vector fields in I'(TM), where U and V are any.

Lemma 3.1. If we take M to be a Kenmotsu manifold's contact CR-

submanifold,...... M when the killing tensor field is present @, then

Al + AV + 2Bh (U V) =0. (3 g)
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Proof. We obtain by switching U and V in equation (2.11) o

(VU = AV + B @, V) + 9 (VU @)V o o

By applying (2.11) and (3.9) to the Clubbing equations, we obtain the following

equation;

(Vet)V + (Vi = Appld + AV + 2Bh (U, V) + g (H4, V) £
Fog(VU)E U}tV — n(V)ild.

Applying the formula (2.9), we obtain (Fetcu, D. 2008).
(Vat)V + (Vb = Auyld + AV + 2Bh (U, V) — 3 (L) tV — n (V) tU.
Given that t is enough in (3.3) and (3.6). This means that we have achieved our

goal.

Proposition 3.1. Assume that M is a contact CR-submanifold of M when the

killing tensor field is present ¢. The anti-invariant submanifold M is defined by

the fact that if the endomorphism t is parallel M

Proof. What we get when we switch U and V in equation (2.15) is
(Vut)U = Bh (U, V) + g (VU E—n(U) 1V,

where I'(D) contains vector fields Uand V.

After plugging the previous equation into (2.15), we get

(Vot) V + (Vut) U = 2BR (U, V) + g (A.V)E + g (tV.UVE — n (V) — 1 (U) V.

If we plug the values from (2.9) and (3.6) into the previous equation, we obtain

2Bh (U, V) — 1 (V) U —n (L) £V = 0.
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We get the following conclusion after considering equations (2.1) and (2.13)

and setting £ =V
i = 0.

A submanifold that is anti-invariant is M. (Venkatesha. 2006).

Proposition 3.2. The contact CR-submanifold of M when the killing tensor

field is present ¢. Submanifold M is referred to as invariant in M should the

endomorphism  is parallel.

Proof. Equation (2.12) may be updated to provide the following result by

swapping U and V.

(Vi) U = Ch U Y) = h(V,U) =1 @&V, (5 4

T(TM) vector fields U and V are being referred to.
By combining equations (3.10) and (2.12), we get
(Vaw) V + (Vow)U = 2C h (U, V) — h (U, tV) — h(V,1U4) —n (V}wld —n(U)wV.
Endomorphism could @ is parallel, the equation cited above produces
2C h (U, V) — h(U,tV) — h(V, ) — p(V)wld — 5 (U)wV = 0.

After considering equations (2.1) and (2.13), we may deduce that, for E=V,

wid =10

A submanifold M is therefore invariant (Fischer, A. E. 2002).

Lemma 3.2. What if ¥ signifies a contact CR-submanifold of and stands for a

Kenmotsu manifold. M when the killing tensor field is present @, then
Iff

2Ch (U, V) = h(U,tV) + h(V, ). (3.12)

Poornima Pandey, Dr. Ajay Singh www.ignited.in



- Journal of Advances in Science and Technology
Vol. 19, Issue No. 3, September-2022, ISSN 2230-9659
Proof. Equation (2.12) yields in this case:
(Vow)V = Ch{Ud, V) — (U, tV) — n(V)wld.
Next, we obtain by integrating the previous equation with (3.10):
(V) V+ (V) U = 2Ch (U, V) — b (U, 1V) — h (V1) — n (V) wld — g (L) wV.
Applying the formula (3.4), we get
(V) V+ (V) U = 2Ch (U, V) — h (U, V) — h (V1) .
Therefore, the outcome is evident.

Examples

For Kenmotsu manifolds satisfying the Killing tensor field, few instances have

been determined o.

-~

Example 3.1.1. What if M ={(z.y,2) € R,z # 0} (X, v. z) be the standard

coordinates in R3, and be the three-dimensional manifold. Assume that g is a

manifold metric. M supplied by
g=c*(de @ ds + dy @ dy) + 4 @7.

We may now select
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a = a

ayl (!32-_'(}—'226.

Each of the aforementioned vector fields is linearly independent with respect to
M enough to g(e;,ej) = 0 for 7 Jand gleig)=1fori=j,for1 <i,j<3.Fora
given vector field U on the manifold, the 1-form is defined as (U) = g(U,e3) M.

Suppose @ stands for the field of (1,1)-tensors and is defined by o(e1) = 0, o(e2)
=0, ¢(e;)=0.

We obtain the result by applying the linearity condition to @ and g.

q&'iu =-—U + ”(M}E- ”[:f'iil = ]-l ﬁ(Wa‘WJ = q(u'!}’;] - TJ{HJH'(v)u

for which the manifold's ¥ vector fields U and V are selected (Hodge, W. V. D.
2018).

After doing the math directly, we get,

V,-,(’.E = —£3, Vﬁ(’.z =[], Vr,(‘.;i = €1,
vr:g"-‘l — “: vr:gf’k = —E£3, vrc\gr-"ii = £3,
Ves&1 = €1, Vegea =22, Vgeg=10.

The manifold is shown to satisfy the equation by using the aforementioned

relations.

Vut =U — )¢ for e; = £ Hence, it is a Kenmotsu manifold. The following

equations are derived from the relations mentioned above.
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(Vedler + (Ved)er = 0, (Ve,des + (Viyd)er =0,
(T d)es + (Vesd)er =0, (Viyder + (Ve d)ez = 0,
(Vesp)ea + (Ves)ez = 0, (Veyi)es + (Vey)ea = 0,
(Vesp)er + (Ve,d)es = 0, (Vegp)ea + (Veyh)es = 0,

kiﬁ'“‘@)e“ t (Vesp)es = 0.

(3.1.1)

Since is the Killing tensor field. it may be inferred from equation (3.1.1). The

result is that the M is a Manifold of Kenmotsu with the Killing tensor field .

Not to mention that we've

ﬁ,.,fﬁ!c] — rﬁﬁf,,m -I—ﬁ,,.g.'bm — q.")ﬁ,.,ﬁ,. = (),

<

,gl'(pfiz == q&ﬁcli’.z - ﬁﬂsz.’(’.l — qﬁﬁp‘i{’] = U,

<l

,._lq&[’.a == ¢ﬁn=[f:| i ﬁnsthl = qﬁﬁ,ﬁ{‘.| = U|

<l

ﬂ;(f:’@] - trﬁll-vluﬂ28| -+ ﬁ“l(.'hc?. =T q"‘ﬁ"l"?? = Ul

<

l"i;ﬁe? - "J‘l’vﬂaﬁ2 An Vi"zf.lﬁe2 - (Fbvf:ge'.! - Ul

<l

::‘-gq‘l}ﬁd - ﬂ‘;ﬁ(:gcﬁ + ﬁn;_:gﬁci 3 qbﬁ:-g{*i = t]!

<

r'._-qt\jﬂ] F= fﬁﬁ”xfﬂ + ﬁf:;{b{af} = q'bvr'qﬁ;i = “1

vl?ﬂ'qbcz _ ﬂﬁﬁu:gﬁz + ﬁa!z"bcﬂ = qbﬁﬁz{)‘:i — nl

Vestes — dVoye3 + Vegdes — Vg3 = 0.
(3.1.2)

nle)gler) +nle)dler) =0, nlezddler) + nle)dlez) =0,
nlea)dler) + nledddles) =0, nled)dlen) + nilea)dler) =0,

nlea)d(ea) + nlea)dles) =0,  nles)dles) + nlea)d(es) =0,

.

nle)plea) + nlea)dle) =0, gles)dles) + nlesdd{es) = 0,
‘T!(fi:s)(fi{t’-ﬂ:l +nles)dles) = 0.

(3.1.3)
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In addition to satisfving equations (3.2) and (3.5), equations (3.1.1) and (3.1.2)

also fulfil equations (3.2), therefore all is correct.

Using the Killing tensor field on a 5-dimensional Kenmotsu manifold yields an

example that is similar to.

M= {(z1, 22,23, 24,v) € R®

Example 3.1.2. Suppose =l to represent the 5-

dimensional manifold and the conventional coordinates in R? as (X1,X2,X3.X4,V).
Define metric g on M is given by

1
g=n®n+e” z dz; ® dr;.

=1
We may now select

P oy | r) . e fj P ) "‘} SR )
£ = ¢ a, g = € E, 3 = & E. g = ¢
Iy R T

o0
3;!7.1 :

Each of the aforementioned vector fields is linearly independent with respect to

gleie;) =

o 0 ; ; 78] = 1 . . o
M such that “For  # 7 and gless &) for i =j, where i, j =

1,2,3.4.5. For the selected vector field U on the manifold. the 1-form is defined
as (U) = g(U.e5) M Suppose ¢ stands for the (1,1) tensor field and is defined
by

dle) =0, Plea) =0, dles) =0, ¢lea) =0, les) =0
Now, by utilising the fact that g and ¢ are linear, we can say that
$U=-U+nUE, nles) =1, algU,¢V) = gU, V) —nU)n(V),

given that the manifold's selected vector fields are U and V M

The result of an easy calculation is,
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Vee1=0, Veee=0, Voes=10, V.,ei=—e, Ve =ey

Ves€r =1, Veta=e, Vyea=e3, Vaer=e¢, Vges=0

Based on the relations mentioned above, it can be shown that the manifold

fulfils the equation

Vuk =U-mlH)E i =5 It follows that is a Killing tensor field, based on the

comparable pattern of Example 3.1.1. Therefore, M exist as a Killing tensor
field—containing 5-dimensional Kenmotsu manifold. The satisfaction of
equations (3.2) and (3.5) is also evident, following an analogy with Example

3.1.1. (Inoguchi, J. 2004)

CONCLUSION

The impact of curves and metal structures on manifold properties show their inherent and extrinsic
qualities. Geodesics and curvature routes help us grasp the manifold's topology and geometry, including its
singularities and curvature behaviour. Metal structures, commonly modelled using differential forms and
tensor fields, provide stiffness and elasticity to the manifold, enriching this research. These structures affect
manifold stability, deformation, and external force response. This interaction between curves and metal
structures affects theoretical mathematics and material science and engineering. It shows how to alter and
regulate complicated geometrical characteristics, improving material and structure design for desired
mechanical and physical attributes. This extensive study highlights the manifold's features' dependence on
curves and metal structures, opening new scientific and technological opportunities.
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