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Abstract: The study of two-phase blood flow through numerical and mathematical modeling has emerged as a crucial
approach for understanding the complex behavior of blood, a non-Newtonian fluid comprising plasma and various cellular
components, primarily red blood cells. This research aims to develop comprehensive models that capture the dynamics
between these two distinct phases—fluid (plasma) and particulate (cells)—within the circulatory system. Mathematical
modeling provides a framework for formulating the governing equations based on principles of fluid dynamics, mass
conservation, and momentum transfer. These equations account for factors such as viscosity, density variations, interfacial
interactions, and shear-thinning behavior. Numerical methods, including finite difference, finite element, and lattice
Boltzmann techniques, are employed to simulate blood flow in various geometries representing arterial and microvascular
networks. The models aid in predicting flow characteristics such as velocity profiles, pressure gradients, and hematocrit
distribution under both physiological and pathological conditions. This dual-phase modeling enables the investigation of
complex phenomena like cell aggregation, plasma skimming, and flow separation in stenosed or bifurcated vessels. The insights
gained are instrumental in enhancing the understanding of cardiovascular health, optimizing biomedical device design, and
improving clinical diagnostics. The study thus bridges theoretical fluid mechanics with practical applications in hemodynamics
and medical research.
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INTRODUCTION

Human circulatory blood flow is an incredibly complicated phenomenon governed by the finely balanced
interplay of biological components and fluid dynamics. All of the body's tissues and organs receive oxygen,
nutrition, hormones, and waste products through the circulatory system's blood. Blood is a non-Newtonian,
heterogeneous, multiphase fluid that primarily consists of red blood cells (RBCs), white blood cells
(WBCs), and platelets, which are liquid components of plasma. The majority of these cells are red blood
cells (RBCs), which are crucial for rheological studies of blood, particularly in relation to the effects of
varying flows in venous, arterial, and capillary systems (Giddens, D. P. 1983). Due to the presence of
many phases—the most crucial of which are cellular components and plasma—accurately simulating blood
flow requires a two-step procedure. Conventional single-phase models simplify the mathematics, but they
fail to take into consideration the complexities of microcirculation, pathological conditions, cell
deformability, and the impact of phase separation (Stone, H. A. 2006). It is now impossible to understand
or predict the behaviour of blood in many physiological and pathological situations without using
mathematical models and numerical simulations of two-phase blood flow. This field aims to improve and
refine models of blood flow dynamics by integrating computational methods with biology, applied
mathematics, and fluid dynamics (Doyle, P. S. 2009).
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It is common practice to describe the plasma as a continuous Newtonian fluid, with the suspended cellular
components, particularly red blood cells (RBCs), represented as either a scattered particulate phase or a
deformable continuum with distinct viscoelastic characteristics. The main objective is to study the
relationship between the two stages, how they affect one another's movement, and how they react to factors
like pressure gradients, shear stress, and restrictions imposed by the vessel walls. Coupled partial
differential equations (PDEs) describing the stress-strain behaviour of the individual phases are commonly
supplemented by PDEs derived from the conservation of momentum and mass for each phase in these
models (Zhao, X. 2014). Incorporating elements such as cell aggregation, deformability, axial movement of
RBCs, Fahraeus and Fahraeus-Lindqvist effects, and plasma skimming into models is possible at varying
levels of complexity. In capillaries and arterioles, where the scale is similar to that of RBCs, the
mathematical description becomes more difficult and techniques based on micro-structural or particulate-
based modelling are required. On the other hand, the bulk behaviour of blood flow is described using
continuum models like two-fluid or mixture theory in bigger arteries and veins. The very coupled and
nonlinear equations that emerge from two-phase models cannot be solved without numerical simulation
(Schroter, R. C. 1971). The application of sophisticated numerical techniques such as the Finite Element
Method (FEM), Finite Volume Method (FVM), Lattice Boltzmann Method (LBM), and Particle-In-Cell
(PIC) methods becomes even more imperative when dealing with pulsatile blood flow, complex vascular
geometry, and boundary conditions that vary both spatially and temporally. Many factors, including
velocity profiles, shear rates, pressure distributions, and phase concentrations, may be visualised and
quantitatively analysed using these models. Researchers have utilised computational fluid dynamics (CFD)
platforms like ANSYS Fluent, OpenFOAM, and COMSOL Multiphysics to model two-phase blood flow
(Kiesewetter, H. 1999).

METHODOLOGY

Mathematical modelling

Following the phases of the mathematical model described below, this chapter presents the approach for
the proposed study:

(I)  Description of Bio-physical Problem

Malaria as a biophysical issue is the subject of this particular discussion. So far, mosquitoes are the vectors
of the malaria virus. During malaria disease, the blood flow in blood vessels was evaluated using a two-
phase blood flow model. Malaria lowers haemoglobin levels and makes red blood cells less elastic.
Maintaining blood circulation via microcirculation relies on the aggregation and deformability of

erythrocytes.

(II) Real Model

(a) Frame of Reference

We need to choose a frame of reference in order to mathematically represent the condition of moving
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blood. Considering the complexity and ubiquity of the blood flow problem, we adopt a generalised three-
dimensional orthogonal curvilinear coordinate system, abbreviated as E3, and from here on we refer to it as
three-dimensional Euclidean space. If we assume that i = 1, 2, and 3 and that O is the origin, then the
coordinate axes would be OXi.
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Figure 1: Controlled Volume

(b) Parameterization of the Bio-physical Problem

In three-dimensional space, let xi represent the coordinate of every given point P. The parameters for the
research work's formulation have been chosen. Methods that quantify the dispersion of blood velocity in
L - o _
space where k, 1 =1, 2, 3. Even though blood is an incompressible fluid, these functions
nonetheless explain two thermodynamic features of the fluid: its density (p) and pressure (p), which are
dependent on both space (xi) and time (t). Traditionally, for each given blood vessel, the mass ratio, r, has
been thought of as a constant metric. variable blood veins have variable concentrations of red blood cells,
hence there is varying degree of fluctuation. Although temperature T is an additional parameter to think
about, only isothermal flow has been examined so far when it comes to blood flow in humans.

(IID) Formulation

Here, we connect the parameters and use the equations from Chapter 4 to obtain the solution.

Conservation Law

(a)  Law of Conservation of Mass

Since there is no obvious source or sink in the human circulatory system and the heart is the only pumping
station, it is reasonable to apply the principle of conservation of mass to haemodynamics. Blood venous
return is equal to blood influx in all four types of blood vessels: arteries, arterioles, capillaries, and

venules.

Mass inflow Mass outflow

Figure 2: Mass of blood inflow and outflow
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Flow rate of red blood cells in mass units of time

at | “Pe

w

Plasma inflow mass/second
o 1—X)p.,dV
5| a-xw,

Red blood cell mass expelled in a certain time period

( by Gauss’s Divergance Theorem)

Exhaust mass of plasma in a given time period

(by Gauss’s Divergance Theorem)

The density of plasma is denoted by [p, the controlled volume limited by surface S is represented by V,
and [Jc represents the density of red blood cells. The ratio of red blood cells to blood volume is denoted by
X.

Gauss’s Divergence Theorem

Assuming the force field is continuously differentiable within and outside the volume V's enclosed surface
S,

f"Ff.nidf - J’”F",i av

(b) Law of Conservation of Momentum

When no external forces are exerted on a fluid, its total energy, or momentum, stays constant. This
phenomenon is known as conservation of momentum. Thereby, momentum conservation will be upheld by
the hepatic circulation system. The hydrodynamic pressure in both the red and white blood cells remains

constant.

Pressure (P) Viscous Force (T)

Figure 3: Direction of pressure and viscous force
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An expression for the momentum rate of change

dp
dt

The force that causes blood to flow as a result

—P+T

Where:

P=p,jg"
Pressure

Viscous force r =19

The outcomeant force is computed in accordance with Newton's second law as

dv’
P at

dv'

7]
The expression at stands for the pace at which a certain particle's velocity in blood is changing.

The force that causes Newtonian blood flow as a result
—p,j g +npne’
The force that causes blood to flow in a non-Newtonian manner
—p,j g4 + ()"

Force that results from non-Newtonian Herschel-Bulkley

blood flow
—p,j g7 +n,(e¥) + 10

ol = glkyl + gikpf

Where: Strain rate

Two phase blood flow
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(I) The hypothesis on the two-phase blood volume

A number of fully formed biological components are concentrated in human blood, according to Bessonov
et al. While white blood cells and platelets make up a negligible fraction of the overall volume, human
blood cells account for almost 99% of all red blood cells. The two distinct parts of blood, plasma and red
blood cells, make a homogeneous mixture. Packets of semi-permeable red blood cells are found in a liquid
known as plasma. Blood behaves Newtonianly at high shear rates but non-Newtonianly and experiences
yield stress under low shear rates. The following state of blood flow behaviour forms the basis of our
study.

Plasma and red blood cells are the two main components of blood.
The flow of blood is not turbulent, but rather streamline or steady.
There is no outflow or inflow in the liver's circulatory system.

At the vessel's axis, the blood flow velocity is zero, while it's maximal at other points.

(IT) Mass Ratio

According to Upadhyay V., the presence of blood cells influences blood flow. The effect that has been
noted is clearly related to the volume that blood cells occupy.

Red Blood Cells

Plasma

Figure 4: Unit volume of blood

H is the haematocrit, the percentage of blood volume that blood cells occupy; 1-X is the volume fraction
that plasma occupies; and X is the ratio of H to 100; hence, X is the volume fraction that blood cells
occupy in a given unit volume. We say that the mass ratio of blood cells to plasma is "r,"

Kpe

(1-X)pp

Both the blood cell density and the plasma density are represented by the quantities [Ic and [Ip,
respectively.

Let [Jm represent the homogeneous density of blood.
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Pm = ch + (1 _X]pp

1+r 1 ¢

Pm Pc Pp

Where:
RESULTS

Two Phase Blood Flow Equation
Equation of Continuity

A basic assumption in fluid dynamics is the equation of continuity, which states that the mass flow rate of
an incompressible fluid stays constant along a streamline. Chapter 3's section (III) provides the basis for the
two-phase blood flow continuity equation.

In this context, V stands for the volume of space, pc for the density of red blood cells, and pp for plasma.
The proportion of red blood cells and plasma in the total volume of blood is represented by XX and (1 —

X)V, respectively. The essential | Xp dv calculates the mass of red blood cells in V and The essential

-r (1 =X)pc dV ‘ascertains the mass of plasma inside a unit volume V. For i =1, 2, and 3, the integral can

denote the mass of red blood cells and plasma passing through a defined surface element surrounding a
given volume independently.

f ' Xp, v'n,dS and f (1= X)p, vin,dS

It follows that the mass of RBCs and plasma ejected from volume V/s may be calculated, respectively.

f  Xp, v'n,dS and f (1= X)p, v'n,dS

& &

Rate of red blood cell inflow

—= [, A—X)p, dv
Plasma inflow rate per time interval
When studying blood flow, one might use the theory of conservation of mass.

Flow of mass equals flow of mass out

The input of RBCs and plasma is equal to the output of the same.
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""" L XpedV == [(1-X)p,dV = [ Xp.vindS+ [ (1-

X)pp vindS 1 |

A surface integral may be converted to a volume integral using Gauss's theorem.

By plugging in (2a) and (2b) into (1),
0 [.Xp.dV 9 [.(1—-X)p,dV
az ) vXPe 30/ v =Xp,

= IV (chvi),;-dv + IV ((1 - X)ppvi)'IdV

] . 0 :
v XpedV + [, (Xpev') @V + - [, (1 =X)p,dV + [, (1 = X)p,v) dV

=0
Or

)p"’] dv =0

Iy [(chv) + ]dV+f [((1 X)ppv) +T
Or

[ [(pevt) + 22+ (1= X)p,vt) +222av =0 3

The choice of the basic volume is completely at random, hence it follows that we must have

Since

Pm = ch + (1 _X)pps
We obtain by plugging relation (5) into equation (4).

%+ (pmv");_ =0 6

Because blood cannot be compressed, the density pm stays the same. Therefore, it is possible to simplify
equation (6).
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=0

Or,

avt

ia,l—
WL (fGu) 07

The two-phase blood flow equation is this.
Equation of Motion

In order to derive momentum, as described in section (III) of Chapter 3, the rate at which the linear
momentum departs from the control volume must equal the external forces acting on the control volume.

Allow V to stand for the regulated volume inside the S-denoted surface that encompasses a certain

geographical area. Think of a made-up fluid particle with a volume dV and a surface area as, = n,dS: at

P=P(II-E) vt =v"(x",t)s

the location xi in time t. Let stands for the stress, stand for the speed and ni

for the surface's normal vector dS. One way to represent the pressure-induced force on this fluid element is
as. Hence, the all-surface force due to the regulated volume may be written as

— f pn;dS

One way to convert the provided formula into a volume integral is by applying Gauss's theorem:

— [pndS = — [p,dV1

You may express the covariant derivative of pressure with respect to xi as the symbol k,i.

—p; =—p;9" 2
2

The conjugate metric tensor is represented by ij.

Both red blood cells and plasma have the same equation of motion, which is:
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i

dﬂ i
Xp.—-=—Xp;g" 3
dvi i
(A=X)pp o, =—A—-X)p;g" 4
dlﬁ’i Ij
{Xp. + 1 =X)p,} - =—p,g" 5
dl)i ii
Pm gy = P97 6

Considering the formula for speed as  v' = v'(x*, t)

dvt  avt dvidx' odvidx? advidx®

B dt ' dt ' de |\ axt’ ax?’ ax3

divt  ov! dx! dx? dx? dvt av? agv?
= 1 ) -
dt at

In relation to the coordinate xj, the covariant derivative of the contravariant vector ai is denoted by the

sign aij.

It may be deduced from the facts given in (6) and (7) that

avl ; 1 .
oy pipt = ——p. gl
It +viv, pcp,}g 8a
avt
oy pipt = — 2y gli
2 T pP.;Q 8b
Now
5(Xﬁct’i} a_vl dXpe
s P TV %a
And
6{(1—?(],091:'5}_ avt a(1-X)pp
at = (1 =X)pp at T ot ¥ ob

Red blood cells and plasma are both determined by the equation of continuity.

dt ot ot dr otz dr o dt

+ v

i

avt
ox/J
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dXpc _ !
Zhe— ~(Xpev'), 10a
% - —((1 —X)ppvf),f 10b

We get the following by plugging (8a) and (10a) into equation (9a):

a(Xp.vt _ , . _

% = _chvzv'; - Xp.j-gu - vI(chvj )-j
aXp. ' . o
(Tc) = —ijg ] — (chv vJ)j

8(Xpev') _  ppif
at = HC} i.illa

In a similar vein, by plugging (8b) and (10b) into (9b) we obtain

8((1=-x)ppv’) _  rif e
B il

The tensors ]_[f:Jr ' f.iand ]'[i;{j. ;i Red blood cells and plasma both display
symmetry.

For the regulated volume V, integrate equations (11a) and (11b) in the following

way:
Xpv' + (1 =X)p, v} + 2 (Xp. + (1 -X)p,} = 0 12a

> (A= X)p,vi)av = -, 1) av 12b

.

Using the divergence theorem of Gauss, one can
g i
STy (Xpevt)av = —f Yn;dS 13a

21 (Xpv')dV = —[ In.dS 13b
gt v [}

The integral of the ith momentum component for plasma and red blood cells in the regulated volume V is

Y and 1)
represented by equations (13b) and (13a). ¢ ? represent the i sAmomentum component that is

moving via a unit area perpendicular to the xj axis of plasma and red blood cells, respectively. The tensible
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1Y and I} _ N/ and )
are called the rank two momentum flux density tensor and signifies the

movement of the i 4 momentum component across a unit surface area for plasma and red blood cells,

respectively. ZI stands for the unit surface normal at surface dSi.

Y and I1/
Equations (11a) and (11b) in the formulation by Euler state that the tensor ¢ ? represent the total

momentum flux density of plasma and red blood cells, including both the reversible change in momentum
due to the movement of fluid particles and the force of pressure. So, a component must be included

Ti_] — X?](Q‘jkv,fk _|_gak ‘f)and TII =(1- X)n(g”‘v _I_grk J . .
found in equations (13a) and (13b),

which represent the momentum flow density tensor for plasma and red blood cells, respectively.

N = Xpg" + Xpv/v' and I = (1 = X)pg" + (1 — X)p.v/v*

T;"r — ik J

Xpg¥ + Xp.vivt — Xn(g/*vi, + g

7 = (1= Xpg¥ + (1 = N)pvv' — (1= Xm(g/* v}, + g* v,

et (g v + g™v})

represents the shear stress tensors of red blood cells and plasma, respectively.

Where n stands for the coefficient of viscosity, is the strain rate tensor and

Hence, the following equations describe the flow of plasma and the motion of red blood cells:

7“{ -f‘t) — 4 —l—I J_ 4a
== l-l }- c.j l‘
M —_— P‘ i p‘,i
a( I—X)P v ) Y iy _|_ ;‘ ];‘.I.; . ‘“J g . i . )

r) = (1= X)pg¥ + (1 - X)pvIv' — (1 - X)n(g/ vl + g'*v}) 15b
Since blood cannot be compressed, the equation for (pcvf )i = 0 and (Pp Vi) P

0 is able to work. Hence, the following form may be used to describe equations

(15a) and (15b):

According to Newton, blood flow
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) = (1-X)pg” + (1 — X)pr/v' — (1 — X)n(g/*vi, + g™*v},) 16a
2G5 _ _ (1~ Xyp, 9" — (1 - X)ppv'v?) + (1 — Xym(g/v +
e = A=Xp;g" — (A -Xp,v'v’) + (A —Xn(g" v,
g"kv_‘;c)’j 16b

Relating to blood flow that is not Newtonian

Rt IR 1 {(Xpe + (1= Dpy 0ol = =, + (g *u}); 17

Or

3(pmv' - i ; n
%+ (pmv-’)vj =—p;9" +n(g=’"vfk J 18

vt i L
— 1 ¢ = j
Pm =, T oV, =T 19

Where: r.‘j =—p;9" + (Qj.kvfk):f

' = —pg¥ 4+, (e¥) = —pg¥ + ;7Y =1, (eY)

All symbols have their standard meaning in this context.

The Navier-Stokes equation, which is used to describe the flow of blood, is the one that is presented above

(19).
CONCLUSION

The numerical and mathematical modeling of two-phase blood flow provides a comprehensive framework
for understanding the complex rheological behavior of blood, which is inherently a suspension of cells in
plasma. By representing blood as a two-phase fluid—typically treating plasma as the continuous phase and
red blood cells (RBCs) as the dispersed phase—researchers can accurately simulate physiological and
pathological flow conditions across different vessel sizes. These models help in capturing critical
phenomena such as phase separation, cell migration, aggregation, and the Fahraeus-Lindqvist effect.
Numerical simulations based on finite element, finite volume, or lattice Boltzmann methods allow the
visualization and quantification of hemodynamic parameters like velocity, pressure, and shear stress
distribution. The integration of non-Newtonian properties and deformability of cells further enhances model
fidelity. Such simulations have proven vital in predicting cardiovascular disorders, evaluating the impact of
medical devices, and optimizing drug delivery mechanisms. However, challenges remain in accounting for
complex vessel geometries, pulsatile flow, and patient-specific conditions. Overall, the synergy of
mathematical formulations with robust computational methods offers a powerful tool for advancing
biomedical research, guiding clinical decisions, and designing therapeutic interventions by providing
insights into the intricacies of microcirculatory and macrocirculatory blood flow behavior.
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