

REVIEW ARTICLE

Study of Political Representations: Diplomatic
Missions of Early Indian to Britain

Journal of
Advances and

Scholarly
Researches in

Allied
Education

Vol. 3, Issue 6,
April-2012,

ISSN 2230-7540

Journal of Advances in
Science and Technology

Vol. IV, Issue No. VIII,
February-2013, ISSN 2230-

9659

AN

INTERNATIONALLY

INDEXED PEER

REVIEWED &

REFEREED JOURNAL

AN EVALUATION UPON IMPACT OF OPERATING
SYSTEM EXECUTION ON SIMULTANEOUS

MULTITHREADED PROCESSOR

www.ignited.in

Dr. Shailendra Singh Sikarwar1 Mahesh Bansal2

w
w

w
.i

gn
it

e
d

.i
n

1

 Journal of Advances in Science and Technology
Vol. IV, Issue No. VIII, February-2013, ISSN 2230-9659

An Evaluation upon Impact of Operating System
Execution on Simultaneous Multithreaded

Processor

Dr. Shailendra Singh Sikarwar1 Mahesh Bansal2

1
Assistant Professor, P. G. V. College, Gwalior

2
Assistant Professor, P. G. V. College, Gwalior

Abstract – This paper presents the first analysis of operating system execution on a simultaneous
multithreaded (SMT) processor. While SMT has been studied extensively over the past 6 years, previous
research has focused entirely on user-mode execution. However, many of the applications most
amenable to multithreading technologies spend a significant fraction of their time in kernel code. A full
understanding of the behavior of such workloads therefore requires execution and measurement of the
operating system, as well as the application itself.

To carry out this study, we (1) modified the Digital Unix 4.0d operating system to run on an SMT CPU, and
(2) integrated our SMT Alpha instruction set simulator into the SimOS simulator to provide an execution
environment. For an OS-intensive workload, we ran the multithreaded Apache Web server on an 8-context
SMT. We compared Apache’s user- and kernel-mode behavior to a standard multiprogrammed SPECInt
workload, and compared the SMT processor to an out-of-order superscalar running both workloads.
Overall, our results demonstrate the micro architectural impact of an OS-intensive workload on an SMT
processor and provide insight into the OS demands of the Apache Web server. The synergy between the
SMT processor and Web and OS software produced a greater throughput gain over superscalar
execution than seen on any previously examined workloads, including commercial databases and
explicitly parallel programs.

---------------------------♦-----------------------------

INTRODUCTION

Simultaneous multithreading (SMT) is a latency-
tolerant CPU architecture that executes multiple
instructions from multiple threads each cycle. SMT
works by converting thread-level parallelism into
instruction-level parallelism, effectively feeding
instructions from different threads into the functional
units of a wide-issue, out-of-order superscalar
processor. Over the last six years, SMT has been
broadly studied and Compaq has recently announced
that the Alpha 21464 will include SMT. As a general-
purpose throughput enhancing mechanism,
simultaneous multithreading is especially well suited to
applications that are inherently multithreaded, such as
database and Web servers, as well as
multiprogrammed and parallel scientific workloads.

This paper provides the first examination of (1)
operating system behavior on an SMT architecture,
and (2) a Web server SMT application. For server-
based environments, the operating system is a crucial
component of the workload. Previous research
suggests that database systems spend 30 to 40

percent of their execution time in the kernel, and our
measurements show that the Apache Web server
spends over 75% of its time in the kernel. Therefore
any analysis of their behavior should include
operating systems activity.

Operating systems are known to be more demanding
on the processor than typical user code for several
reasons. First, operating systems are huge programs
that can overwhelm the cache and TLB due to code
and data size. Second, operating systems may
impact branch prediction performance, because of
frequent branches and infrequent loops. Third, OS
execution is often brief and intermittent, invoked by
interrupts, exceptions, or system calls, and can cause
the replacement of useful cache, TLB and branch
prediction state for little or no benefit. Fourth, the OS
may perform spin-waiting, explicit cache/TLB
invalidation, and other operations not common in
user-mode code. For these reasons, ignoring the
operating system (as is typically done in architectural
simulations) may result in a misleading
characterization of system-level performance. Even
for applications that are not OS-intensive, the

Dr. Shailendra Singh Sikarwar1 Mahesh Bansal2

w
w

w
.i

g
n

it
e

d
.i
n

2

 An Evaluation upon Impact of Operating System Execution on Simultaneous Multithreaded Processor

performance impact of the OS may be
disproportionately large compared to the number of
instructions the OS executes.

For SMT, a functional processor and operating system
do not yet exist. In lieu of these, we extended the
SimOS-Alpha infrastructure, adding an Alpha-based
SMT core as the instruction execution engine. SimOS
is a simulator detailed enough to boot and execute a
complete operating system; in the case of the Compaq
Alpha, SimOS executes PAL code as well. We also
modified the Digital Unix 4.0d operating system to
support SMT. This modification is quite
straightforward, because Digital Unix is intended to run
on conventional shared-memory multiprocessors and
is therefore already synchronized for multithreaded
operation.

As the first study of OS behavior in an SMT
environment, our goal is to answer several basic
questions. First, how would previously reported results
change, if at all, when the operating system is added
to the workload? In particular, we wish to verify the IPC
results of previous studies to see whether they were
overly optimistic by excluding the OS. For these
studies, we used a multiprogrammed workload
consisting of multiple SPECInt benchmarks. Second,
and more important, what are the key behavioral
differences at the architectural level between an
operating-system-intensive workload and a traditional
(low-OS) workload, both executing on SMT? For
example, how does the operating system change
resource utilization at the microarchitecture level, and
what special problems does it cause, if any, for a
processor with fine-grained resource sharing like
SMT? For this question, we studied one OS-intensive
application, the widely used Apache web server,
driven by the SPEC Web benchmark. We compared
the Apache workload and the SPECInt workload to
study the differences in high-OS and low-OS usage.
Third, how does a Web server like Apache benefit from
SMT, and where does it spend its time from a software
point of view? This analysis is interesting in its own
right, because of the increasing importance of Web
servers and similar applications. We therefore present
results for Apache on an out-of-order superscalar as
well as SMT. Overall; our results characterize both the
architectural behavior of an OS-intensive workload and
the software behavior (within the OS) of a key
application, the Apache Web server.

BACKGROUND OF SMT

The history of SMT research can be broken into two
distinct areas: architectures based on dynamic
superscalars and those based on other architectures
such as VLIW. The earliest work was in the non-
superscalar field; the .MARS-M. system and the
.Matsushita Media Research Laboratory processor.
are examples. The move towards superscalar based
designs started with the .Multistreamed superscalar
processor.

The model of SMT widely used in recent years
[Tullsen98] is based on work carried out at the
University of Washington. The Washington design was
originally based on a static superscalar architecture
[Tullsen95]. The design was evaluated against a
single-threaded dynamic superscalar with the same
issue width (number of instructions that can be
executed per cycle) and found to outperform the
dynamic superscalar (which itself outperformed an
IMT-style design).

The Washington work moved towards a dynamic, out-
of-order, superscalar design when it was found that
such an architecture could be made to be
multithreaded with only a small cost. The design
started with a high-performance out-of-order
superscalar design similar in spirit to the MIPS
R10000. To support multiple threads multiple program
counters were added; these were fetched from on an
interleaved basis. Structures that needed to be per-
thread, such as retirement and the trap mechanism,
were duplicated. Thread tagging support was added
to shared data structures, such as the branch target
buffer, where the ownership of an entry was not made
clear by the renaming of registers. The design
supported eight threads which placed a large demand
on physical registers therefore they opted to increase
the size of the register file and pipeline its access.

OPERATING SYSTEM SUPPORT

Abstracting threads in an SMT processor as logical
processors is a convenient way to provide instant
backwards compatibility; however, it introduces
complications into the otherwise simple action of
counting processors.

Many commercial operating systems are licensed for
a particular number of processors. An interesting
problem with building logical processors on top of
physical processors is which level of the hierarchy
should be counted for the license. If it is decided to
count logical processors then a further complication is
caused by the ability to disable threads. Should the
licensing count be based on the number of threads
enabled, or the total number possible? An argument
for the latter case is that a check could be carried out
at boot time and the threads re-enabled later. Hyper-
Threading is now a standard feature on all new high-
end Pentium 4 processors so if a system without SMT
is required then the second logical processor on each
package must be disabled. A license using the logical
processor count is likely to be unfair in such a
situation.

The two obvious choices for numbering the logical
processors are:

1. Number first by package and then by logical
processor within each package,

Dr. Shailendra Singh Sikarwar1 Mahesh Bansal2

w
w

w
.i

gn
it

e
d

.i
n

3

 Journal of Advances in Science and Technology
Vol. IV, Issue No. VIII, February-2013, ISSN 2230-9659

2. Number through the first logical processor in
each package then through the second and so
on.

The second method is useful in situations where the
operating system is licensed for a particular number of
processors and runs on the lowest numbers
processors, ignoring the remainder. In the first
numbering system this would cause entire physical
packages to be ignored while logical processors
compete on the active packages. The enumeration of
processors can be performed by the OS or BIOS. In
the latter case it is important that the OS knows how
the BIOS performed the enumeration.

Knowledge of the difference between logical and
physical processors is useful for load-balancing and
scheduling. In a scenario where a system has two
physical packages each of two logical processors, and
has two runnable processes, the scheduler has to
decide which processors to use and which to leave
idle. A scheduler unaware of the processor hierarchy
may assign the tasks to the lowest numbered
processors; using the Linux enumeration method
these would be the two logical processors of the first
package. The entire second package would be idle
which would not give the highest system throughput.
Although Linux 2.4.17 was .Hyper-Threaded aware. it
exhibited this problem; later versions were able to
support the logical/physical processor distinction.

A PROCESS SCHEDULER FOR SMT
PROCESSORS

There are two ways in which an SMT processor could
be allocated by a scheduler:

 The processor could be treated as a set of
individual, independent logical processors.
This requires that the hardware threads are
heavyweight, i.e. processes. This interface is
provided by Intel's Hyper-Threaded
processors.

 An SMT processor could be used to run true
multithreaded workloads. In this scenario the
physical processor is allocated as a single
resource rather than separating out the logical
processors. A multithreaded workload written
or compiled for this particular SMT processor
would be able to exploit its characteristics.

A scheduler that is completely unaware of the
hierarchical nature of SMT processors using the logical
processor abstraction will not know that resources are
shared between .sibling. processors. As described in
this paper this can lead to runnable tasks being
scheduled on two logical processors of one package
while another package remains idle. In addition, such
a scheduler misses out on some scheduling flexibility:

since logical processors on the same package share
much state, particularly caches, a process can be
migrated between logical processors with little loss
compared to migrating between physical processors.
This flexibility is useful when balancing load across
processors.

The term processor affinity is used to describe a given
process having a preference to be scheduled to
execute on one or more specified processors.
Processor affinity can be influenced by factors such as
soft-state built up on one processor, the suitability of a
processor for the task or the available resources in a
heterogeneous system. Most multiprocessor
schedulers use processor affinity in some form.

Cache affinity is a form of processor affinity where the
process has an affinity for the soft-state it has built up
in the processor caches. Whilst this may seem to be
the same as basic processor affinity it is actually a
dynamic scheme. If a given process it preempted by
a second process that causes data belonging to the
first process to be evicted from the cache then the
first process' affinity for that cache (and therefore
processor) reduces. The extreme is that all data
belonging to the first process is evicted. In this case
the process has no affinity for any cache/processor
so the scheduler can assign it to any processor.
Measuring the cache affinity of a process accurately
would need potentially costly hardware support but
an approximation can be made by counting cache
line evictions to estimate process cache footprints.

The concept of cache affinity is relevant to SMT
architectures because the caches are shared by the
threads. The scheduler need not worry which logical
processor within a given physical package it assigns
a process to, the view of the cache will be the same.

The SMT specific knowledge useful to scheduling will
be of the interactions of processes with certain
characteristics. The scheduler must therefore know
about the characteristics of currently running, or
candidate processes. Such knowledge could be
acquired by static inspection of program text
segments (the executable code) or dynamic
measurement of the running processes.

Static analysis of the programs is beneficial in its cost
(a onetime activity) but only provides a limited
amount of information; effects such as mis-
speculation and cache hit rates are important. These
effects could only be obtained off-line through
simulation/emulation; it would be just as well to run
the code and measure it. Dynamic measurement of
the running processes provides more information, not
only on the process itself but on how it is interacting
with the processes on the other logical processor(s).

Dr. Shailendra Singh Sikarwar1 Mahesh Bansal2

w
w

w
.i

g
n

it
e

d
.i
n

4

 An Evaluation upon Impact of Operating System Execution on Simultaneous Multithreaded Processor

Dynamic measurement will incur an overhead for both
sampling and evaluating the sampled data.

OPERATING SYSTEM EXECUTION

OS simulation environment - At one level the OS is
simply a large program; however, it is unique in having
access to low-level hardware resources (e.g., I/O
device registers and internal CPU registers) and
responding to lowlevel hardware events (e.g.,
exceptions and interrupts). To simulate the OS thus
requires simulating those resources and events. In this
work, we built upon the SimOS-Alpha hardware
simulation framework, integrating our SMT CPU
simulator into SimOS.

This allows us to boot and run the operating system on
the simulator and include in our simulation every
instruction, privileged or non-privileged, that would be
executed on a real CPU. The SimOS environment also
executes Alpha PAL code – a layer of software that
exists below the operating system itself. PAL code is
used, for example, to respond to TLB misses and to
handle synchronization within the OS (SETIPL). We
also model almost all OS/hardware interactions that
affect the memory hierarchy, such as DMA operations
and cache flush commands. The one exception is
DMA operations from the network interface; although
including network-related DMA would double the
number of memory bus transactions for the Apache
workload (the SPECInt workload doesn’t use the
network), the average memory bus delay would remain
insignificant, since it is currently only 0.25 cycles per
bus transaction.

Our studies focus on CPU and memory performance
bottlenecks. In the interest of simulation time, we
simulate a zero-latency disk, modeling a machine with
a large, fast disk array subsystem. However, all OS
code to manipulate the disk is executed, including the
disk driver and DMA operations. Modeling a disk-
bound machine could alter system behavior,
particularly in the cache hierarchy.

OS modifications - We execute the Compaq/Digital
Unix 4.0d operating system, a (shared-memory)
multiprocessor-aware OS. By allowing SMT to appear
to the OS as a shared-memory multiprocessor (SMP),
the only required changes to the OS occur where the
SMT and SMP architectures differ. In the case of the
Alpha, these differences are SMT’s shared TLB and
L1 caches, versus the per-processor TLB and L1
caches of an Alpha SMP. Of these two differences,
only the TLB-related OS code required modification.

The OS we execute contains the set of minimal
changes required to run Digital Unix on an SMT, but
does not explore the numerous opportunities for
optimizations. For example, OS constructs such as the
idle loop and spin locking are unnecessary and can
waste resources on an SMT. (However, in the
experiments presented in this paper, idle cycles
constituted no more than 0.7% of steadystate CPU

cycles, and spin locking accounted for less than 1.2%
of the cycles in the SPECInt workload and less than
4.5% of cycles in the Apache workload.) Another
possible optimization would be to replace the MP OS
process scheduler with an SMT-optimized scheduler.
We plan to investigate OS optimizations as future
work, but it is encouraging that an SMP-aware OS can
be modified in a straight-forward fashion to work on an
SMT processor.

CONCLUSION

In this paper, we reported the first measurements of an
operating system executing on a simultaneous
multithreaded processor. For these measurements, we
modified the Compaq/DEC Unix 4.0d OS to execute
on an SMT CPU, and executed the operating system
and its applications by integrating an SMT instruction-
level simulator into the Alpha SimOS environment.
Our results showed that:

1. For the SPECInt95 workload, simulating the
operating system does not affect overall
performance significantly for SMT, although
the OS execution does have impact on a
superscalar.

2. Apache spends most of its time in the OS
kernel, executing file system and networking
operations.

3. The Apache OS-intensive workload is very
stressful to a processor, causing significant
increases in cache miss rates compared to
SPECInt.

4. From our detailed analysis of conflict misses,
there is significant interference between
kernel threads on an SMT, because SMT can
execute instructions from multiple kernel
threads simultaneously. On the other hand,
there are opportunities for benefiting from
cooperative sharing, as we showed in our
analysis of interthread prefetching.

5. Overall, operating system code causes poor
instruction throughput on a superscalar.
SMT’s latency tolerance is able to
compensate for many of the demands of
operating system code. When executing
Apache, SMT achieves a 4-fold improvement
in throughput over the superscalar, the
highest relative gain of any SMT workload to
date.

Finally, we showed that it is relatively straightforward
to modify an SMP-aware operating system to execute
on a simultaneous multithreaded processor. In the
future, we intend to experiment with OS structure in
order to optimize the OS for the special features of
SMT.

Dr. Shailendra Singh Sikarwar1 Mahesh Bansal2

w
w

w
.i

gn
it

e
d

.i
n

5

 Journal of Advances in Science and Technology
Vol. IV, Issue No. VIII, February-2013, ISSN 2230-9659

SMT processors are likely to be commonplace for a
good while. SMT provides an effective way to extract
more throughput from a processor without incurring a
high implementation overhead. With Intel now
producing SMT processors as standard and IBM
starting to produce their SMT Power5 processor, the
use of SMT will become more widespread. It is likely
that future SMT processor will support more threads
than current implementations because the overhead of
adding

the extra state to the processor is fairly low. However,
although early SMT research described processors
with up to 8 threads and hinted at even larger
numbers, practical considerations such as the size and
complexity of the register file limit the scalability of
SMT. Multicore processors, which have now been
available for a few years, with a shared level 2 cache
are likely to have their scalability limited by the
connection and bandwidth between the cores and the
cache. Both IBM and Sun Microsystems have
announced processors which combine multithreading
and multiple cores. It is likely that this combination will
become more common in the future.

REFERENCES

 C.Zilles, J. Emer, and G. Sohi. The use of
multithreading for exception handling. In 32nd
Annual International Symposium on
Microarchitecture, November 1999.

 D.M. Tullsen and J. A. Brown. Handling Long-
latency Loads in a Simultaneous
Multithreading Processor. In Proceedings of
the 34

th
 Annual International Symposium on

Microarchitecture (MICRO-34), pages 318.
327. IEEE Computer Society, December 2001.
(p 51)

 D.M. Tullsen, S. J. Eggers, and H. M. Levy.
Simultaneous Multithreading: Maximizing On-
Chip Parallelism. In Proceedings of the 22th
International Symposium on Computer
Architecture (ISCA '95), pages 392.403. IEEE
Computer Society, June 1995. (pp 20, 37)

 R.Chappell, J. Stark, S. Kim, S. Reinhardt, and
Y. Patt. Simultaneous subordinate
microthreading (SSMT). In 26

th
 Annual

International Symposium on Computer
Architecture, May 1999.

 S.J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo
R. L. Stamm, and D. M. Tullsen. Simultaneous
Multithreading: A Platform for Next-Generation
Processors. IEEE Micro, 17(5):12.19, October
1997. (pp 20, 37)

 S.Parekh, S. Eggers, and H. Levy. Thread-
sensitive scheduling for smt processors.
Technical report, Department of Computer
Science & Engineering, University of
Washington, 2000.

 T.Ungerer, B. Robi_c, and J. _ Silc. A Survey
of Processors with Explicit Multithreading.
ACM Computing Surveys, 35(1):29.63, March
2003. (p 20)

 U.Sigmund and T. Ungerer. Memory hierarchy
studies of multimedia-enhanced simultaneous
multithreaded processors for MPEC-2 video
decompression. In Workshop on Multi-
Threaded Execution, Architecture and
Compilation, January 2000.

 Y.Hu, A. Nanda, and Q. Yang. Measurement,
analysis and performance improvement of
the apache web server. In Proceedings of the
18th International Performance, Computing
and Communications Conference, February
1999.

