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Abstract – This paper presents the first analysis of operating system execution on a simultaneous 
multithreaded (SMT) processor. While SMT has been studied extensively over the past 6 years, previous 
research has focused entirely on user-mode execution. However, many of the applications most 
amenable to multithreading technologies spend a significant fraction of their time in kernel code. A full 
understanding of the behavior of such workloads therefore requires execution and measurement of the 
operating system, as well as the application itself. 

To carry out this study, we (1) modified the Digital Unix 4.0d operating system to run on an SMT CPU, and 
(2) integrated our SMT Alpha instruction set simulator into the SimOS simulator to provide an execution 
environment. For an OS-intensive workload, we ran the multithreaded Apache Web server on an 8-context 
SMT. We compared Apache’s user- and kernel-mode behavior to a standard multiprogrammed SPECInt 
workload, and compared the SMT processor to an out-of-order superscalar running both workloads. 
Overall, our results demonstrate the micro architectural impact of an OS-intensive workload on an SMT 
processor and provide insight into the OS demands of the Apache Web server. The synergy between the 
SMT processor and Web and OS software produced a greater throughput gain over superscalar 
execution than seen on any previously examined workloads, including commercial databases and 
explicitly parallel programs. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Simultaneous multithreading (SMT) is a latency-
tolerant CPU architecture that executes multiple 
instructions from multiple threads each cycle. SMT 
works by converting thread-level parallelism into 
instruction-level parallelism, effectively feeding 
instructions from different threads into the functional 
units of a wide-issue, out-of-order superscalar 
processor. Over the last six years, SMT has been 
broadly studied and Compaq has recently announced 
that the Alpha 21464 will include SMT. As a general-
purpose throughput enhancing mechanism, 
simultaneous multithreading is especially well suited to 
applications that are inherently multithreaded, such as 
database and Web servers, as well as 
multiprogrammed and parallel scientific workloads. 

This paper provides the first examination of (1) 
operating system behavior on an SMT architecture, 
and (2) a Web server SMT application. For server-
based environments, the operating system is a crucial 
component of the workload. Previous research 
suggests that database systems spend 30 to 40 

percent of their execution time in the kernel, and our 
measurements show that the Apache Web server 
spends over 75% of its time in the kernel. Therefore 
any analysis of their behavior should include 
operating systems activity. 

Operating systems are known to be more demanding 
on the processor than typical user code for several 
reasons. First, operating systems are huge programs 
that can overwhelm the cache and TLB due to code 
and data size. Second, operating systems may 
impact branch prediction performance, because of 
frequent branches and infrequent loops. Third, OS 
execution is often brief and intermittent, invoked by 
interrupts, exceptions, or system calls, and can cause 
the replacement of useful cache, TLB and branch 
prediction state for little or no benefit. Fourth, the OS 
may perform spin-waiting, explicit cache/TLB 
invalidation, and other operations not common in 
user-mode code. For these reasons, ignoring the 
operating system (as is typically done in architectural 
simulations) may result in a misleading 
characterization of system-level performance. Even 
for applications that are not OS-intensive, the 
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performance impact of the OS may be 
disproportionately large compared to the number of 
instructions the OS executes. 

For SMT, a functional processor and operating system 
do not yet exist. In lieu of these, we extended the 
SimOS-Alpha infrastructure, adding an Alpha-based 
SMT core as the instruction execution engine. SimOS 
is a simulator detailed enough to boot and execute a 
complete operating system; in the case of the Compaq 
Alpha, SimOS executes PAL code as well. We also 
modified the Digital Unix 4.0d operating system to 
support SMT. This modification is quite 
straightforward, because Digital Unix is intended to run 
on conventional shared-memory multiprocessors and 
is therefore already synchronized for multithreaded 
operation. 

As the first study of OS behavior in an SMT 
environment, our goal is to answer several basic 
questions. First, how would previously reported results 
change, if at all, when the operating system is added 
to the workload? In particular, we wish to verify the IPC 
results of previous studies to see whether they were 
overly optimistic by excluding the OS. For these 
studies, we used a multiprogrammed workload 
consisting of multiple SPECInt benchmarks. Second, 
and more important, what are the key behavioral 
differences at the architectural level between an 
operating-system-intensive workload and a traditional 
(low-OS) workload, both executing on SMT? For 
example, how does the operating system change 
resource utilization at the microarchitecture level, and 
what special problems does it cause, if any, for a 
processor with fine-grained resource sharing like 
SMT? For this question, we studied one OS-intensive 
application, the widely used Apache web server, 
driven by the SPEC Web benchmark. We compared 
the Apache workload and the SPECInt workload to 
study the differences in high-OS and low-OS usage. 
Third, how does a Web server like Apache benefit from 
SMT, and where does it spend its time from a software 
point of view? This analysis is interesting in its own 
right, because of the increasing importance of Web 
servers and similar applications. We therefore present 
results for Apache on an out-of-order superscalar as 
well as SMT. Overall; our results characterize both the 
architectural behavior of an OS-intensive workload and 
the software behavior (within the OS) of a key 
application, the Apache Web server. 

BACKGROUND OF SMT 

The history of SMT research can be broken into two 
distinct areas: architectures based on dynamic 
superscalars and those based on other architectures 
such as VLIW. The earliest work was in the non-
superscalar field; the .MARS-M. system and the 
.Matsushita Media Research Laboratory processor. 
are examples. The move towards superscalar based 
designs started with the .Multistreamed superscalar 
processor. 

The model of SMT widely used in recent years 
[Tullsen98] is based on work carried out at the 
University of Washington. The Washington design was 
originally based on a static superscalar architecture 
[Tullsen95]. The design was evaluated against a 
single-threaded dynamic superscalar with the same 
issue width (number of instructions that can be 
executed per cycle) and found to outperform the 
dynamic superscalar (which itself outperformed an 
IMT-style design). 

The Washington work moved towards a dynamic, out-
of-order, superscalar design when it was found that 
such an architecture could be made to be 
multithreaded with only a small cost. The design 
started with a high-performance out-of-order 
superscalar design similar in spirit to the MIPS 
R10000. To support multiple threads multiple program 
counters were added; these were fetched from on an 
interleaved basis. Structures that needed to be per-
thread, such as retirement and the trap mechanism, 
were duplicated. Thread tagging support was added 
to shared data structures, such as the branch target 
buffer, where the ownership of an entry was not made 
clear by the renaming of registers. The design 
supported eight threads which placed a large demand 
on physical registers therefore they opted to increase 
the size of the register file and pipeline its access. 

OPERATING SYSTEM SUPPORT 

Abstracting threads in an SMT processor as logical 
processors is a convenient way to provide instant 
backwards compatibility; however, it introduces 
complications into the otherwise simple action of 
counting processors. 

Many commercial operating systems are licensed for 
a particular number of processors. An interesting 
problem with building logical processors on top of 
physical processors is which level of the hierarchy 
should be counted for the license. If it is decided to 
count logical processors then a further complication is 
caused by the ability to disable threads. Should the 
licensing count be based on the number of threads 
enabled, or the total number possible? An argument 
for the latter case is that a check could be carried out 
at boot time and the threads re-enabled later. Hyper-
Threading is now a standard feature on all new high-
end Pentium 4 processors so if a system without SMT 
is required then the second logical processor on each 
package must be disabled. A license using the logical 
processor count is likely to be unfair in such a 
situation. 

The two obvious choices for numbering the logical 
processors are: 

1. Number first by package and then by logical 
processor within each package, 
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2. Number through the first logical processor in 
each package then through the second and so 
on. 

The second method is useful in situations where the 
operating system is licensed for a particular number of 
processors and runs on the lowest numbers 
processors, ignoring the remainder. In the first 
numbering system this would cause entire physical 
packages to be ignored while logical processors 
compete on the active packages. The enumeration of 
processors can be performed by the OS or BIOS. In 
the latter case it is important that the OS knows how 
the BIOS performed the enumeration. 

Knowledge of the difference between logical and 
physical processors is useful for load-balancing and 
scheduling. In a scenario where a system has two 
physical packages each of two logical processors, and 
has two runnable processes, the scheduler has to 
decide which processors to use and which to leave 
idle. A scheduler unaware of the processor hierarchy 
may assign the tasks to the lowest numbered 
processors; using the Linux enumeration method 
these would be the two logical processors of the first 
package. The entire second package would be idle 
which would not give the highest system throughput. 
Although Linux 2.4.17 was .Hyper-Threaded aware. it 
exhibited this problem; later versions were able to 
support the logical/physical processor distinction. 

A PROCESS SCHEDULER FOR SMT 
PROCESSORS 

There are two ways in which an SMT processor could 
be allocated by a scheduler: 

  The processor could be treated as a set of 
individual, independent logical processors. 
This requires that the hardware threads are 
heavyweight, i.e. processes. This interface is 
provided by Intel's Hyper-Threaded 
processors. 

 An SMT processor could be used to run true 
multithreaded workloads. In this scenario the 
physical processor is allocated as a single 
resource rather than separating out the logical 
processors. A multithreaded workload written 
or compiled for this particular SMT processor 
would be able to exploit its characteristics. 

A scheduler that is completely unaware of the 
hierarchical nature of SMT processors using the logical 
processor abstraction will not know that resources are 
shared between .sibling. processors. As described in 
this paper this can lead to runnable tasks being 
scheduled on two logical processors of one package 
while another package remains idle. In addition, such 
a scheduler misses out on some scheduling flexibility: 

since logical processors on the same package share 
much state, particularly caches, a process can be 
migrated between logical processors with little loss 
compared to migrating between physical processors. 
This flexibility is useful when balancing load across 
processors. 

The term processor affinity is used to describe a given 
process having a preference to be scheduled to 
execute on one or more specified processors. 
Processor affinity can be influenced by factors such as 
soft-state built up on one processor, the suitability of a 
processor for the task or the available resources in a 
heterogeneous system. Most multiprocessor 
schedulers use processor affinity in some form. 

Cache affinity is a form of processor affinity where the 
process has an affinity for the soft-state it has built up 
in the processor caches. Whilst this may seem to be 
the same as basic processor affinity it is actually a 
dynamic scheme. If a given process it preempted by 
a second process that causes data belonging to the 
first process to be evicted from the cache then the 
first process' affinity for that cache (and therefore 
processor) reduces. The extreme is that all data 
belonging to the first process is evicted. In this case 
the process has no affinity for any cache/processor 
so the scheduler can assign it to any processor. 
Measuring the cache affinity of a process accurately 
would need potentially costly hardware support but 
an approximation can be made by counting cache 
line evictions to estimate process cache footprints. 

The concept of cache affinity is relevant to SMT 
architectures because the caches are shared by the 
threads. The scheduler need not worry which logical 
processor within a given physical package it assigns 
a process to, the view of the cache will be the same. 

The SMT specific knowledge useful to scheduling will 
be of the interactions of processes with certain 
characteristics. The scheduler must therefore know 
about the characteristics of currently running, or 
candidate processes. Such knowledge could be 
acquired by static inspection of program text 
segments (the executable code) or dynamic 
measurement of the running processes. 

Static analysis of the programs is beneficial in its cost 
(a onetime activity) but only provides a limited 
amount of information; effects such as mis-
speculation and cache hit rates are important. These 
effects could only be obtained off-line through 
simulation/emulation; it would be just as well to run 
the code and measure it. Dynamic measurement of 
the running processes provides more information, not 
only on the process itself but on how it is interacting 
with the processes on the other logical processor(s). 
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Dynamic measurement will incur an overhead for both 
sampling and evaluating the sampled data. 

OPERATING SYSTEM EXECUTION 

OS simulation environment - At one level the OS is 
simply a large program; however, it is unique in having 
access to low-level hardware resources (e.g., I/O 
device registers and internal CPU registers) and 
responding to lowlevel hardware events (e.g., 
exceptions and interrupts). To simulate the OS thus 
requires simulating those resources and events. In this 
work, we built upon the SimOS-Alpha hardware 
simulation framework, integrating our SMT CPU 
simulator into SimOS. 

This allows us to boot and run the operating system on 
the simulator and include in our simulation every 
instruction, privileged or non-privileged, that would be 
executed on a real CPU. The SimOS environment also 
executes Alpha PAL code – a layer of software that 
exists below the operating system itself. PAL code is 
used, for example, to respond to TLB misses and to 
handle synchronization within the OS (SETIPL). We 
also model almost all OS/hardware interactions that 
affect the memory hierarchy, such as DMA operations 
and cache flush commands. The one exception is 
DMA operations from the network interface; although 
including network-related DMA would double the 
number of memory bus transactions for the Apache 
workload (the SPECInt workload doesn’t use the 
network), the average memory bus delay would remain 
insignificant, since it is currently only 0.25 cycles per 
bus transaction. 

Our studies focus on CPU and memory performance 
bottlenecks. In the interest of simulation time, we 
simulate a zero-latency disk, modeling a machine with 
a large, fast disk array subsystem. However, all OS 
code to manipulate the disk is executed, including the 
disk driver and DMA operations. Modeling a disk-
bound machine could alter system behavior, 
particularly in the cache hierarchy. 

OS modifications - We execute the Compaq/Digital 
Unix 4.0d operating system, a (shared-memory) 
multiprocessor-aware OS. By allowing SMT to appear 
to the OS as a shared-memory multiprocessor (SMP), 
the only required changes to the OS occur where the 
SMT and SMP architectures differ. In the case of the 
Alpha, these differences are SMT’s shared TLB and 
L1 caches, versus the per-processor TLB and L1 
caches of an Alpha SMP. Of these two differences, 
only the TLB-related OS code required modification. 

The OS we execute contains the set of minimal 
changes required to run Digital Unix on an SMT, but 
does not explore the numerous opportunities for 
optimizations. For example, OS constructs such as the 
idle loop and spin locking are unnecessary and can 
waste resources on an SMT. (However, in the 
experiments presented in this paper, idle cycles 
constituted no more than 0.7% of steadystate CPU 

cycles, and spin locking accounted for less than 1.2% 
of the cycles in the SPECInt workload and less than 
4.5% of cycles in the Apache workload.) Another 
possible optimization would be to replace the MP OS 
process scheduler with an SMT-optimized scheduler. 
We plan to investigate OS optimizations as future 
work, but it is encouraging that an SMP-aware OS can 
be modified in a straight-forward fashion to work on an 
SMT processor. 

CONCLUSION 

In this paper, we reported the first measurements of an 
operating system executing on a simultaneous 
multithreaded processor. For these measurements, we 
modified the Compaq/DEC Unix 4.0d OS to execute 
on an SMT CPU, and executed the operating system 
and its applications by integrating an SMT instruction-
level simulator into the Alpha SimOS environment. 
Our results showed that: 

1. For the SPECInt95 workload, simulating the 
operating system does not affect overall 
performance significantly for SMT, although 
the OS execution does have impact on a 
superscalar. 

2. Apache spends most of its time in the OS 
kernel, executing file system and networking 
operations. 

3. The Apache OS-intensive workload is very 
stressful to a processor, causing significant 
increases in cache miss rates compared to 
SPECInt.  

4. From our detailed analysis of conflict misses, 
there is significant interference between 
kernel threads on an SMT, because SMT can 
execute instructions from multiple kernel 
threads simultaneously. On the other hand, 
there are opportunities for benefiting from 
cooperative sharing, as we showed in our 
analysis of interthread prefetching. 

5. Overall, operating system code causes poor 
instruction throughput on a superscalar. 
SMT’s latency tolerance is able to 
compensate for many of the demands of 
operating system code. When executing 
Apache, SMT achieves a 4-fold improvement 
in throughput over the superscalar, the 
highest relative gain of any SMT workload to 
date. 

Finally, we showed that it is relatively straightforward 
to modify an SMP-aware operating system to execute 
on a simultaneous multithreaded processor. In the 
future, we intend to experiment with OS structure in 
order to optimize the OS for the special features of 
SMT. 
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SMT processors are likely to be commonplace for a 
good while. SMT provides an effective way to extract 
more throughput from a processor without incurring a 
high implementation overhead. With Intel now 
producing SMT processors as standard and IBM 
starting to produce their SMT Power5 processor, the 
use of SMT will become more widespread. It is likely 
that future SMT processor will support more threads 
than current implementations because the overhead of 
adding 

the extra state to the processor is fairly low. However, 
although early SMT research described processors 
with up to 8 threads and hinted at even larger 
numbers, practical considerations such as the size and 
complexity of the register file limit the scalability of 
SMT. Multicore processors, which have now been 
available for a few years, with a shared level 2 cache 
are likely to have their scalability limited by the 
connection and bandwidth between the cores and the 
cache. Both IBM and Sun Microsystems have 
announced processors which combine multithreading 
and multiple cores. It is likely that this combination will 
become more common in the future.  
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