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Abstract- There are advantages and disadvantages to incorporating electric vehicles (EVs) into power
networks, particularly for Grid-to-Vehicle (G2V) charging. Examining the effects on grid stability and EV
owners' perspectives, this study examines the scheduling tactics of EVAs for G2V operations. Economic
and technical aspects of EVA's V2G scheduling will be covered extensively in the article. Focussing on grid
stability via regulating services and the perspective of EV owners on charging cost reduction, this will be
used to design an EVA static G2V scheduling algorithm. This is the static G2V charge scheduling case where
EVA already knows the EV owners' charging profiles. Traditional, unregulated G2V charge scheduling is
contrasted with the suggested method. Briefly discussing G2V scheduling approaches and related work in
this area helps to keep things moving forward. In order to assess EVA's performance metrics, a
comprehensive outline of the system architecture is given.
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INTRODUCTION

The energy management system in a smart grid allows for the seamless interconnection of
electric vehicle charging networks, the power grid, and EVA. Using this information, EVA
may develop efficient strategies for smart load aggregation, lowering customer costs,
satisfying demand, & avoiding system overloading. Static, offline charging & dynamic, online
charging are the two main categories into which data from the pre-G2V charge schedule setup
falls. As part of the planned simplification effort, we take a static charging situation into
consideration, where EVA already has all of the EV owners' entire charging profile data
(including arrival & departure timings, starting state of charge upon arrival, and intended state
of charge upon departure) stored. Once EVA arrives, each EV owner follows the charging plan
it computes using the static G2V charge scheduling problem (SCSP) algorithm, which takes

into account pricing and next driving information.

From the point of view of EV owners, EVA reduces the expense of charging. On the other
hand, getting the most affordable charging option is no assurance of top-notch system
efficiency. From SO's point of view, it's trying to maximise the grid's ancillary service benefits.
As a for-profit organisation, EVA's goal in creating its own schedule is to maximise profits.
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To rephrase, it discourages boosting regulation while simultaneously minimising charging
costs. These issues are performance-uncertain & centred on the person, ignoring the needs of
other entities. The combined worries of SO and EV owners might be alleviated by the co-
optimization of techno-economic goals, such as minimising charging costs & ensuring grid
stability through regulating services, through an ideally coordinated static G2V charge
schedule of EVA.

The stability of the grid depends on equitable distribution of loads & frequency stability, both
of which are necessary for SO. By charging electric vehicles with a lower POP when baseload
is high and a higher POP when baseload is low, EVA can help achieve a generally fair
distribution of loads by applying appropriate POP each hour according to baseload. In this
way, EVA regulates the billing rate to prevent the system from being overloaded due to an
increase in peak load caused by non-scheduled POP. So, when demand surges, EVA may help
keep the supply and demand in balance by cutting power from the grid. The suggested solution
optimises both EVA's income from grid stability support and the charging costs of electric
vehicle owners at the same time through static G2V scheduling. An effective approach is
devised to achieve a balance between the EVA's income & charging expenses after a thorough
customer-centric analysis of EV charging is undertaken. Electric vehicle owners may also
customise their charging needs using this approach. Not to mention that, in contrast to the
heuristic charging scenario shown in similar research, the static charging scenario is easy to

implement as a regular and correct manner, removing computing weight.
SYSTEM MODEL

A schematic representation of the proposed G2V charge scheduling architecture is shown in
Figure 1. The main components of a G2V scheduling architecture are shown in this system
model, which also shows how an EVA, a substation, and a set of related transformers integrate
EVs into the grid. Electric vehicles are connected to a leaf node transformer, which is located
on the node's lateral. To avoid transmission line & equipment overload, this design connects
the aggregated EVs to the leaf node transformers in a way that controls the EV charging rate
so it doesn't exceed the delivery capability of each transformer. During off-peak hours, an
EVA can charge the EVs at a higher pace than during peak hours, depending on the battery
capacity & load circumstances. While attending to these duties, EVA is also making an effort

to optimise income.
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Figure 1: EV Charging Network Architecture

In a typical day, EVA pays the grid a wholesale price for electricity that changes hourly.
During the day's peak hours, this purchase cost is significant in a dynamic pricing situation,
but during off-peak hours, it's quite cheap. In order to mitigate its exposure to fluctuations in
the market, the EVA adds a margin to the wholesale price before selling it to consumers. The
mark-up price is the extra profit margin. The EVA collects data from the SO in addition to the
EV owners. EV customers are presumed to have the freedom to come and go at their

convenience in the model under consideration in this study.

A single charging session can be represented by five data sets: the i-index for the EV number,
tai the arrival time of i'" EV, tdi departure time of ith EV, SOCi "' initial SOC of i" EV and
SOCi PES desired SOC of i EV. The current electric vehicle charging schemes are not
particularly complicated, and the majority of them rely on advance information based on a
regular vehicle movement pattern. Despite the fact that some charging tasks may not have
available information in advance, this assumption seems reasonable to begin with. Many
automobiles prefer to charge exclusively throughout the night because the load is lower then.
Assumption: the electricity market under consideration operates on an hourly basis. Going
forward, the G2V charge schedule horizon will be 24 hours, spanning the entire day from noon

on the current day to noon the following day. Every interval lasts for an hour.
REGULATION CAPABILITIES OFFERED BY A SINGLE EV

The SO is responsible for maintaining a steady frequency and a level or evenly distributed load
to guarantee the system's stability & dependability. To achieve a more fair distribution of

loads, the EVA can adjust the charging rates of the linked EVs POP;;such that they are lower
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during peak hours and greater during off-peak hours. In case the SO contacts EVA to request
more power during an emergency, EVA will temporarily adjust the charge rates to meet the
increased or decreased demand. Providing this kind of service is known as regulation in the
power market. Regulation capacity describes the extent to which an EVA may alter its

charging rate in reaction to grid demand.

The utilization of EV capacity for up/down regulation is shown in Fig. 2. Put another way, it
shows how much regulation capacity the SO can get from only one EV. Because it is the
maximum power that an electric vehicle's battery can absorb, the maximum charging rate is
dependent on the battery itself. The following equation takes into account the maximum
charging rate limit POP;: ™, which is the power needed to charge the ith electric vehicle to

its desired SOC in a one-time slot t:

(socP® -soc,,)-Bc,
Ef; 1)

POPT™ =

Here, SOCi; is the SOC level, BCi is the battery capacity (kwh) and Ef; is the charging
efficiency of i'" EV battery. The maximum charging rate for an EV cannot be exceeded within
any given time window. When there is a shortfall in generation and the system needs to make
up the difference by slowing down charging rates to lower the load from electric vehicles, this
is called regulation up capacity uci:. To calculate ucit, subtract the electric vehicle's lower
charging rate limit—the amount by which it can reduce its charging rate to assist increase the
system frequency—from its scheduled charging rate limit. An rise in the charging energy
consumption of electric vehicles at a given time t necessitates a regulation-down capacity it,
dc, which occurs when the system experiences surplus generation and must balance this
amount by increasing the charging rate for i"" EV. The difference between the upper charging
rate limit or maximum charging rate limit (whichever is smaller) and the scheduled charging
rate is the dcit. Furthermore, once charging a cluster of EVs, the overall regulation down
capacity should be additionally limited by the transformer delivery capacity TDC. EVA
governs whether the aggregated charging rates POP; « (kW) and regulation down capacities dc
i t (KW) of entire plugged-in N EVs is within TDC (kW) i.e. guaranteeing 2.POF, +dc, <TDC.
Regulation capacity rci: is thus the total of regulation down capacities dci: and regulation up
ucit . This is one way EVA might back keeping the system's frequency stability while also
providing SO with regulating services. As a result, SO is open to paying for EVA's regulatory

services.
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Figure 2: Regulation Up/Down Capacities Offered by a Specific EV
PROBLEM FORMULATION

The suggested static G2V charge scheduling problem takes into account two competing goals,
each limited by its own set of technical & economic constraints: minimizing the charging cost
to EV owners and maximizing the revenue to the EVA. Over the complete scheduling horizon,
the best outcome includes charging schedules, regulating capacity, and SOC of linked EVs
with a specific charging task. The charging cost for electric vehicle owners should not go over
the top limit while the EVA's revenue is being maximized. When the system load is met
& demand from EV owners (as indicated by charging jobs) is also met, then any charging plan

can be considered practical.
UNCONTROLLED BASELINE CHARGE SCHEDULING PROBLEM

When an electric vehicle is connected to the grid, EVA charges it in a single time slot under
the uncontrolled charging type. So, this kind of pricing doesn't take prices into account.
Electric vehicles are charged at the maximum allowed charging rate, POP; ™ (kW), in the
baseline or uncontrolled charging configuration.

There is no economic basis for decision-making in unregulated charging. Unregulated
charging may, therefore, constitute a cost upper bound in terms of overall charging energy
cost. The price structure determines this limit on expenditure. When calculating costs,
charging energy, & regulation capacities, it's important to keep in mind that an EV could not
be accessible for a specific slot. The plug-in availability of EV i in the time interval t is given
by the binary variable Avi: according to Eqg. (2). In particular, the Avi: representing the
availability or lack thereof of an EV can take the value 1 in cases where the time interval is
longer than the arrival time but shorter than the departure time, or the value 0 in all other cases.
Equation (3) states that the higher value charging cost that corresponds to the availability of

EVs is the upper bound of the charging cost (CB).
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H 0 otherwise (2)
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PROPOSED STATIC G2V CHARGE SCHEDULING PROBLEM (SCSP)

Prioritizing EV owner satisfaction & SO benefit, the suggested static G2V charge scheduling
problem (SCSP) takes into account two competing goals: minimizing charging costs for EV
owners & maximizing EVA revenue, all within the bounds of a) system restrictions and b) EV
limits. A feasible charging task takes into account the system's technical limitations as well as
the monetary constraints of EVs. Over the complete scheduling horizon, the best outcome
includes charging schedules, regulating capacity, and SOC of linked EVs with a specific
charging task. The charging cost for electric vehicle owners should not go over the top limit
while the EVA's revenue is being maximized. Two statements can be used to define the

suggested problem:

e SCSP
> 2 REVS

Problem 1: With respect to the specified charging tasks, the EVA’s revenue 1 should

be maximum amongst all the feasible charging tasks in SCSP.

Re v.ﬁ'( SP_

T N T N
=1 =

> RE-rc,, + .Y (M, + ER™)-POP, -4v, "
1 i=l '

i=1 t

The regulation pricing ($/kWh) is represented by RPt, the mark-up price ($/kWh) is denoted
by Mt, and Avit, indicates if the EV is available or connected. According to Equation (4),
there are two components that make up EVA's revenue. The SO's regulation service comes
first. SO receives both upstream and downstream regulation services from EVA. With regard
to the New York Independent System Operator (NY1SO), a market that is thought to be
symmetrical, EVA offers both services for the same price. Thus, regulating revenue is
calculated by multiplying the total regulation capacity offered by EV i at time t by the
regulation power price at time t. Moreover, EVA buys energy on the wholesale market at a
price EPt RTP that is updated in real-time and then sells it at a premium Mt over EPt RTP.
Profit from selling energy to meet the charging needs of available EVs is denoted by the second
term, which is calculated as the product of the markup price over the charging rate of EV i at
time t, and EPt RTP.

Sitaram Raikwar, Dr. Shyam Sunder Kaushik www.ignited.in 233



Journal of Advances in Science and Technology
Vol.22, Issue No. 4 September-2025, ISSN 2230-9659

Problem 2: With respect to the specified charging tasks, the EV owners’ charging cost

N T

Z Z (-“(:sf 5P

par should be minimum among all the feasible charging tasks in the SCSP.

t=I1 i=1

CC**F = i EP"™* [ipog_f -Av,, ]
()

The purchase cost CCSCSP should be least according to Eq. (5), while the revenue of EVA

should be greatest among all possible charging jobs for the defined tasks set, as described

before. This study attempts to quantify the dynamics of SCSP by framing it as a profit

maximization problem of EVA, where EVA is defined as the difference between its revenue

& costs. Given this, we may declare (6) to define the scheduling problem:

S0¢ }.,[.Ilzg}l’f,, e, Profit=Rev™™" ~CC™ (6)

All of the charging profile details for ith EV, including tai, tdi, SOCi"N!, and SOCi PES, are

known to EVA in a static charging environment. We can anticipate the ith EV's arrival time

tai and departure time tdi by looking at its mobility pattern history. Based on the equations in

(7) and (8), it is presumed that they adhere to the pdf, which is a probability distribution

function. The mean is represented by utai & p tdi standard deviation of the variables with

normal distributions, respectively, is o tdi and tai.

" o2 2o, )’ @

df(fd ] _ 1 ex . {tda _Aufdj )2
paj\ia; o 2 p 2o, ) @)
The SOC of every linked EV is given a value per hour in this constraint (9). Aviy, is availability
status for i'" EV during a time slot t . The computation of regulation capacity, charging energy,
and cost would be significantly affected by the availability of EVs.

soc™, if t=ta, Vi
50C,, = SOCP®, if t=1d, Vi
SOC,,_, + Ef.Av,, | POP.,_ |/ BC,, otherwise

if—l1

(9)

For electric vehicles to be able to charge, EVA is necessary. Hence, the fuel efficiency of an
EV i is used as a time limit at the time of departure (10),
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. = (12)
re;, =uc;, +dc;, Vit (13)
(POR,-P™)-Av,, Vit st. Av,, =1
HCH = F
0, otherwise. (14)
(min{PORT™, B™ | ~POR, )-Av,, Vit st Av, =1
dC” = ” ! Lt Iy i
0, otherwise. (15)
N
Z (POPH' +de_, ) + I:T <TDC Yt
- (16)

For each time slot t in POPj;, the charging rate of the i'" electric vehicle is limited by the lowest
charging rate limit (in kW) & highest charging rate limit (in kW) in restriction (11). The
maximum allowable cost ($) to charge an electric vehicle is denoted as CB in constraint (12).
The total cost of charging the vehicles under an unregulated scenario, where the maximum
potential charging rate is applied, is shown in (.3). In order to determine the regulatory
capacity, constraints (13-15) are derived from the system model described in the preceding
section.

In equation (13), the total regulation capacity, denoted as rciy, is equal to the sum of the
regulation up & regulation down capacities, denoted as ucitand it, dc, respectively. With the
help of Egs. (14) and (15), we can calculate the regulation up/down capacity for ith EV at a
given time t, ucit, / dcit. For every time slot t, EVA checks to see if the total of all connected
EVs' charging rates (POPi:) & regulation down capacities (dcis) (in kW) is less than or equal
to the delivery capacity (TDC) of the distribution transformer. This prevents the transformer
from being overloaded due to the charging of EVs and ensures that the EVs are charged within
the acceptable range of its delivery capacity. Equation (16) expresses this congestion control
constraint, which guarantees that TDC is always honored. The baseload at time slot t is

represented here by Ibt. It should be mentioned that any EV that isn't available for a specific
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hour will not be counted towards the overall regulation service delivered by the EVA to the

SO, as the projected market for regulation service is hourly.

Using constraints (1)—(3) and (10)—(16), this paper explains mathematical optimization that
was done to maximize (3.6). As an example, for a certain time slot t, we have the total cost of
charging all electric vehicles ($) and the cost of electricity ($/kWh) as EPt. In addition to
maximizing (4), it minimizes (5). What follows is a description of the results as well as the
mathematical formulation in depth. In order to get a trade-off solution & conduct multi-
objective optimization using the objectives specified by equations (4) and (5), an optimization
framework is established in Matrix Laboratory (MATLAB). The full optimization issue is
mixed-integer linear since it incorporates both binary or continuous variables; this is revealed
by examining the objective functions and constraints. If the availability is not seen as a binary
variable but as something that is predicted based on the communicated arrival & departure
times, the problem can be simplified to a linear one. Next, we will go over the specifics of how

we used MATLAB's Simplex technique to solve the Linear Programming Problem (LPP).
RESULTS AND DISCUSSIONS

We test the suggested static G2V charge scheduling approach using real data from the baseload
& battery systems, as well as actual prices from the power market. The NYISO hourly market
is precisely where the power & regulation prices are sourced. For the purpose of this
simulation, the 30-day average of power & regulation prices (January 1-30, 2015) is utilized.
Realistic information on utai, ptdi, o tai & o tdi, and TDC is recorded. The load profile is used
to determine the base loads at each hour, with the battery capacity efficiency and charging rate
limit being taken into consideration as references. Table 3.1 details the various constants
utilized in the simulations. It is believed that the EVA will charge EV owners a markup price
of 0.05 $/kWh. Each EV's DES SOCi is set at 0.9, and the SOCi INI is dispersed between [0.3,
0.9]. The range of the charging rate POPI,t is from zero to four and a half kilowatts. This study
employs a ten-run Monte Carlo simulation to produce ten different sets of randomly generated
input data, and the numbers below provide the average values from all ten iterations. To find
the best compromise, we multiply EVA's performance metrics—its income & total cost of
charging the EVs—Dby each other. Various values of N and Pimax are simulated to compare
their effects on the performance characteristics, which are affected by the number of electric

vehicles (N) & maximum charging rate (Pimax).
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Table 1: Simulation Parameters

Mean of 1, Mean of 1, Standard Deviation Standard Deviation
of I, of 7,
7 19 2 hours 2 hours
T ™DC E, BC,
24 200 kW 0.9 16 kWh

Determining the Effects of EV Population on EVA Efficiency Measures

Integrating electric vehicles into the grid depends on the number of vehicles in a given area.
The majority of relevant parties are hesitant to implement G2V charge schedule management
systems & services for electric vehicles unless the number of EVs in a given area reaches a
certain saturation point. To rephrase, from a cost-benefit perspective, it is not reasonable to set
up EV battery loading services if there are few pluggable EVs. This is because efforts and
costs remain constant irrespective of the number of plugged vehicles, whereas benefits are
dependent on vehicle stock. As a result, the quantity of electric cars shows the saturation point
of the stock of conventional automobiles. Figure 3 shows the financial performance indicators
of EVA, including revenue, charging cost, & profit, for a range of EV numbers (5-200) and
an upper charging rate limit of 4.4 kW, optimised using Eq. (6). With a high number of
customers having EVs, the overall charging cost per customer dramatically decreases, as the
number of cars increases. In other words, the minimum total charging cost for consumers is

lowering. Having a big number of EV users also means greater income for the EVA.
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Figure 3: Performance Parameters of EVA Versus the Number of EVs
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In G2V charge scheduling, Figs. 4 and 5 display the comparison of monetary values with the
amount of EVs for two methods: the baseline (unregulated) scenario & suggested way after
optimising Egs. (5) and (4), correspondingly. The effectiveness of the suggested approach is
confirmed. The graphs show that the suggested plan using the simplex solution method
produces superior outcomes. Additionally, in comparison to uncontrolled baseline charging of
EVs, regulated charging schedule provides substantially lower minimum total charging cost
& bigger maximum EVA income. The overall charging cost per customer drops dramatically
when there are a lot of customers with EVs, as shown in Fig. 4, which shows summarises that
the minimum total charging cost for clients is lowering as the number of cars increases. Figure

5 shows that the EVA's income increases as the number of EV consumers increases.

M Baseline Case ™ Our results
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Figure 4: Minimizing the Total Charging Cost by Electric Vehicle Count
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Figure 5: Maximal EVA Revenue as a Function of EV Count
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Analyzing the Effects of the Maximum Charging Rate on EVA Performance
Characteristics

Figure 6 shows how EVA performance parameters including maximum revenue, minimum
total charging cost, and profit are impacted by the increased charging rate constraint. By
adjusting the maximum charging power from 3.3 kW to 8.8 kW in increments of 1.1 kW,
simulations are performed for N = 200 EVs. Figure 6 shows that increasing the maximum
charging rate does not significantly benefit EV owners. However, as this restriction enhances
the regulating capability, the income of maximum EVA grows approximately linearly with the
upper charge rate limit. That is why enhancing the EVA framework is the only way to make
increasing the charge rate feasible and achieve it successfully. On the other hand, if the charge
rate is significantly greater, the system may experience overheating, loss of power, and a rise
in peak load demand from EV charging. Increasing the maximum charging rate won't help
electric vehicle owners much, as demonstrated in Figs. 7 and 8 for a smaller group of EVs N
=5, when considering the influence of the restriction on maximum EVA's income or minimum
total charging cost. However, when the highest charging rate limit approaches, the income of
maximum EVA grows practically linearly.

BEVA'srevenue M Charging cost Profit

700

— 600
)

5 500
=

S 400
()

£'300
¥

200

100

0

33 44 55 7.7 8.8

6.6
Upper charging rate limit

Mon

Figure 6: Performance Parameters of EVA Versus Upper Charging Rate Limit

In addition, the expansion & contraction of the transformer is increased daily due to EV
charging, which shortens its lifespan, because it creates new load peaks that exceed the service
transformer's rated delivery capability. It puts a financial strain on SO and speeds up the ageing
of equipment. Overloading the transformer is a critical issue that has to be addressed in order

to slow down the increase in the charging rate. By coordinating intelligently with SO, EVA is
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able to get the value of the transformer's delivery capacity and adhere to loading constraints
while scheduling G2V.
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Figure 7: Minimal Total Charging Costs vs. Maximum Charging Rate

Ly
16.8
l6.6
6.4
16.2 ¢

16
15.8
15.6
154
15.2

15
14.8

EVA's Revencue (5)

0 2 4 6 3 10

Upper charging rate limit(kW)

Figure 8: Comparison of the Upper Charging Rate Limit to the Maximum EVA's

Revenue
EPILOGUE

In this chapter, we look at the possibility of coordinated regulated EV charging & suggest
static G2V scheduling of EVA to minimise the effects of new load peaks caused by large-scale
EV integration, accommodate EV charging while maintaining peak demand, and maximise
grid utilisation. The expense to EV owners and income to EVA have been included into a
mathematical optimisation issue concerning the creation of a controlled EV charging
infrastructure. The scenario is based on a static charging schedule. The LPP has been resolved
by employing MATLAB's simplex approach. We exhibit the revenue increases & cost
reductions brought about by optimal static G2V charge scheduling based on simulation
findings that are based on real power pricing and load data. We compare the EVA income and
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charging expenses for both regulated & uncontrolled charging situations. They are also
examined for their sensitivity to changes in the maximum charge rate and the number of cars.
Interesting trends in grid reliability, charging rate regulation, & the economics of EV charging

emerge from the results.

There are measurable metrics that determine the algorithm's behaviour & performance, such
as EVA's income and overall charge cost. A sort of performance indicator utilised by
businesses to monitor and evaluate how well their optimisation strategy is doing. One way to
demonstrate the possible benefits of regulated charging is to utilise the optimal solutions
provided by static charge scheduling methods as a baseline for evaluating performance. When
compared to the uncontrolled baseline instance, effective charge scheduling results in
significant income gains & expense savings. Because the cost of charging is lower than in the
previous example. Additionally, EVA vyields a higher profit than the baseline situation.

When compared to the uncontrolled baseline strategy, EVA may achieve an average revenue
improvement of 139% and a total billing cost reduction of 18.5%. Therefore, the suggested
method is superior since it allows EVA to earn more money while meeting the needs of EV
owners through cheaper charging. So, reducing network congestion & increasing grid support
regulatory services for SO are both facilitated by the proposed effort. By lowering the billing

cost burden, the outcomes are better reflecting the customer's opinion.
CONCLUSION

This paper provides a high-level overview of how to add a customer-centric viewpoint to an
already established method of charge scheduling. In a practical sense, EV owners are free to
come and go whenever they choose, and EVA isn't informed about the charging schedule of
EVs in advance. With this setup, the EVA is not privy to EV arrival details before to their
actual arrival, making the local/online/dynamic G2V charge scheduling issue (DCSP) more
realistic. Furthermore, demand-side management techniques can further minimise the
charging cost for EV owners. Because of the value they add to regulatory services, incentives
for EV owners are spreading. The computational cost is increased due to the incorporation of
EV mobility uncertainty in a dynamic scenario in the issue formulation. Future work should
focus on leveraging emerging technologies like artificial intelligence and data analytics to
further refine scheduling strategies, ensuring a more resilient and adaptable power grid in the

face of increasing EV adoption.
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