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Abstract: Compound AI Systems are the emerging phenomena integrating “large language models (LLMs)” with additional
components like agents, retrievers, orchestrators, and tools to deal with issues of individual models in tasks which need
reasoning, memory, multimodal knowledge, and real-time grounding. These systems compose various specialized modules into
cohesive flows for more context-aware and capable behaviors. Irrespective of rising adoption in both industry and academia,
the landscape of compound AI systems has been fragmented, with a lack of unified model for taxonomy, analysis, and
evaluation. In LLMs, recent advancements and AI systems have made a significant change in optimization and design of
complex workflows. Compound AI systems have been adept with various components when it comes to perform smart tasks.
With the rise in complex systems, there are new challenges when it comes to optimizing both interactions and components.
While traditional optimization models are foundational, such as “reinforcement learning (RL)” and “supervised fine-tuning
(SFT)”, there are promising new avenues with the rise of “natural language processing (NLP)”, especially when it comes to
optimizing different systems. This study offers a systematic review of recent developments for compound AI systems. It
validates the notion of optimizing compound AI systems, highlights open research challenges, and classifies current approaches
apart from major dimensions.
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INTRODUCTION

Based on “Transformer architecture”, “Large Language Models (LLMs)” have evolved significantly from
academic models to foundational models for artificial intelligence (AI). These models support chat
interfaces, scientific tools for discovery, enterprise copilots, and automated systems for generating codes.
Flagship LLMs like Claude, Gemini, and GPT-4 regularly exceed baselines in NLP and reasoning
benchmarks and the international market for Gen AI may be $1.3 trillion or beyond by 2030 (Bloomberg,
2023). However, LLMs seem to be compelling for the same properties to penetrate on autoregressive
prediction of token and static corpora to bring structural changes.

First, LLMs may produce factually inaccurate and fluent output, declining trust in high-stakes environments
like law, healthcare, and scientific analysis. Second, LLMs are unable to access knowledge after training,
affecting their receptiveness to common facts. Third, inference budgets and context windows in bounded
reasoning oblige long-horizon and multi-hop reasoning decomposition of tasks. These issues impede the
effective and safe placement of LLMs in real-world, dynamic settings which need factual dependency,
recency, and reasoning of composition.

The community is meeting on a new paradigm to deal with these challenges – compound AI systems
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(CAIS). These are extensible and modular designs integrating LLMs with external parts, such as, agents,
retrievers with high recall, long-term modules, symbolic planners, orchestration models, and multimodal
encoders to perform dynamic, complex, and accurate tasks. By dissociating responsibilities across tasks
and routing them to right models smartly, compound AI systems go beyond LLM’s capabilities ahead of
what can be achieved by monolithic models.

Early placements suggest the transformative role of this change. For instance, Perplexity.ai (2025) and
other retrieval-amplified models offer real-time answers with citations based on chain-of-thought. In
addition, Copilot-X by GitHub arranges repository search, reasoning of code, and test generation to
improve developer throughput by around 55% (Peng et al, 2023). Combined with triage agents, multimodal
pipelines have minimized turnaround of report by 30% while retaining accuracy in expert level
(RADLogics, 2021). These cases mark a change in philosophy of design, i.e., from LLMs as independent
soloists to conductors for scoring varied ensembles of AI.

Irrespective of rising interest, systematic knowledge is elusive in Compound AI systems. Recent studies
have addressed individual aspects of this environment, such as, surveys conducted on “retrieval-augmented
generation (RAG), multi-agent models, LLM agents, and LLM-based optimization (Fan et al, 2024; Li,
2025; Guo et al, 2024; Lin et al, 2024). Some focus on narrow sides like benchmark analysis, prompt
engineering, or agent protocols (Ferrag et al, 2025; Ma et al, 2024; Yan et al, 2025), without having to
address trade-offs and interactions across the whole stack of Compound AI systems. These works provide
valuable knowledge about their domains, still there is a lack of system-level, holistic synthesis.

Compound AI systems are a new generation of AI models based on LLMs, having various smart
components like code interpreters, simulators, RAG modules, and web search tools.  These systems are
highly capable across domains and perform better than separate LLMs. For example, LLMs working with
solvers can solve the math problems at Olympiad level (Trinh et al, 2024), integrating with code
interpreters and search engines to match the overall performance of programmers (Yang et al, 2024b), and
drive discovery of biological materials with knowledge graphs (Ghafarollahi and Buehler, 2024).

Even with mature toolkits rationalizing the design process of CAIs, including LlamaIndex and LangChain,
significant human intervention is needed to personalize these systems for targeted applications (Liu, 2022;
Chase, 2022). It often covers trial-and-error mechanisms and heuristic-based pipelines (Xia et al, 2024;
Zhang et al, 2024c). This limitation has encouraged efforts for developing automated, principled
approaches for end-to-end optimization of AI systems. Still, operational schemes of these models diverge
well as per whether modifications are allowed to the topology of the system and how learning signals are
transmitted.

In addition, there is still a lack of cohesive conceptual model or standard terminology in the field, making
some articles harder for navigators and newcomers (Khattab et al, 2023; Cheng et al, 2024). Irrespective of
having solid frameworks in existing surveys, they are based on optimization based on natural language,
overlooking major schemes allowing updates without covering recent advances (Liu et al, 2025; Lin et al,
2024). There are four important dimensions to fill these gaps, when it comes to examining current
approaches. A 2x2 taxonomy has been proposed by Lee et al (2025) based on these dimensions (Figure 1)
covering different works.
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Figure 1: The 2x2 framework covering “Learning Signals (x-axis)” and “Structural Flexibility (y-
axis)”

Source – Lee et al (2025)

BACKGROUND

Compound AI Systems

In contrast to individual AI models functioning as statistical models, compound AI systems are referred to
as systems dealing with AI tasks with various interacting components (Vaswani et al, 2017; Zaharia et al,
2024) (Figure 2). Somehow, the term “Compound AI system” often overlaps with concepts and is often
used together in the field. These cover “multi-agent systems (MAS)”, language model programs, and
language model pipelines (Zhou et al, 2025; Khattab et al, 2023; Opsahl-Ong et al, 2024).

Figure 2: An illustration of a Compound AI system and optimizing it

Source – Lee et al (2025)

In Figure 2, CAI is based on LLMs and various interacting modules. Complex user queries are used by the
system. There are two kinds of learning signals leveraged in automated strategies for optimization, such as

29

Journal of Advances in Science and Technology
Vol. 22, Issue No. 4, September-2025, ISSN 2230-9659

Jai Ramesh Juneja www.ignited.in



numerical signals and NLP feedback to guide updates for enhanced performance. Even though end-to-end
optimization of models like neural networks is simple due to gradient-oriented backpropagation, compound
AI systems are made of non-differentiable parts which need novel approaches for optimization (Paszke,
2019). Some of the common examples are heuristic models applied for finding the right examples in LLM
prompts, along with methods using auxiliary models for offering textual feedback on updates (Khattab et al,
2023; Yuksekgonul et al., 2025).

Large Language Models

Language modelling is a basic task performed by NLP to predict the next character or term in a specific
range of text (Jones, 1994; Chowdhary, 2020). It consists of developing models to generate and understand
intelligible language. The major goal of language modelling is capturing the distribution of possibility of
terms in a language, enabling the model to generate complete sentences, new text, and predicting the odds
of various sequences of word (Iqbal and Qureshi, 2022; Nozza et al, 2021; Min et al, 2023; Soam and
Thakur, 2022). They are widely classified into ML models, statistical models, transformer models, and
deep learning models (Figure 3). N-gram models or early models were based on individual statistical
approaches to predict the odds of word sequences with frequency (Diao et al, 2021; Brown et al, 1992;
Omar and Al-Tashi, 2018). However, a lot of strong computing devices and public datasets can be used for
processing such big data with complex models and has resulted in improving large models (Rawat et al,
2022; Lhoest et al, 2021; Sharir et al, 2020).

Figure 3: Categories of LLMs – ML models, Statistical models, Transformer models, and DL
models. Source – Hadi et al (2024)

Also known as “next-generation” or “transformative” language models, Large Language Models (LLMs)
represent a huge innovation in Natural Language Processing (Hochreiter and Schmidhuber, 1997). These
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models use DL approaches, especially the transformer model (Luitse and Denkena, 2021) to understand
and learn complex structures and patterns prevalent in language data (Dong et al, 2023). Ability for
processing big data, such as capturing semantic relations between phrases and words and unstructured text
is a key trait of LLMs (Adnan and Akbar, 2019). These models process audio, audiovisual, visual, and
multi-modal information and learn semantic relations among them (Awais et al, 2025; Zhang and Bing,
2023; Rouditchenko et al, 2020; Zhao et al, 2023). These models have improved the potential of machines
significantly to generate and understand familiar language (Huang and Chang, 2022).

It is possible to trace back the history of LLMs to the early stage of neural networks and language models
(Pappas and Meyer, 2012). The journey starts with the age of statistical models (Bellegarda, 2004).
Researchers depend mostly on prediction of sequences of words and probabilistic models (Lafferty and
Zhai, 2003). Some of the classic examples are “Maximum Entropy Models”, “Hidden Markov Models
(HMMs) and n-grams” (Petrushin, 2000; Khudanpur and Wu, 2000). For instance, N-grams are sequences
of adjacent tokens or words that can predict the odds of the next term based on preceding ones (Wang et
al, 2020). These models have marked an important point to start in NLP.

They enabled basic word prediction and text generation but limited in their potential for capturing complex
relationships (Rosenfeld, 2002; Arisoy et al, 2012; Bellegarda, 2002). Then, a shift has been observed
towards data-based approaches (Alva-Manchego et al, 2020). Researchers have explored ML models for
improving knowledge of language (Malik et al, 2021). These models have learned relationships and
patterns in a large corpus of texts. ML models have brought a smarter approach to tasks related to NLP,
developing applications like sentiment analysis and spam detection (Crawford et al, 2015; Neethu and
Rajasree, 2013).

OPTIMIZING COMPOUND AI SYSTEMS WITH GEN AI DESIGN CYCLE

Even though end-to-end optimization of individual neural network models is simple with gradient boosting
on their layer connections, compound AI systems are designed with non-differentiable components and
need novel optimization (Paszke, 2019; Rumelhart, 1986). Some of the examples are heuristic methods
based on bootstrap applied on finding ideal examples in-context (Khattab et al, 2023). There are also
approaches using auxiliary LLM which can provide feedback on updates or improved typologies have been
proposed (Yuksekgonul et al., 2025).

GenAI of Generative AI is the most generalized and disruptive technology of the debate, which has
influenced a lot of industries like marketing, gaming, media, education, medical, software development,
pharmaceuticals, and construction technology (Chiang, 2023). Unlike general AI programs used for
specific tasks like data clustering, classification, segmentation, object detection, or predictions, GenAI can
generate new and sensible content of various modalities of data, such as images, videos, and speech
(Aldausari et al, 2022). Some of the common examples of GenAI are code generators (Co-Pilot), chatbots
(ChatGPT or Bard), and image generators (like Midjourney) (Hong et al, 2023).

Size-wise, GenAI models have been scaled to hundreds of billions of parameters to a few million over the
past years (Aydın and Karaarslan, 2023). With the rise in size of model, model also performs better, and it
can be generalized for different tasks (Kim et al, 2021). However, small models can also be designed well
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for better tasks (Sanh et al, 2019). Google’s Bard, OpenAI’s ChatGPT, and Meta’s Llama are some of the
Large Language Models (LLMs) designed to generate familiar language to respond to a prompt given by a
human user (Jo, 2023). These models are trained on big data with techniques for learning statistical
language patterns. However, a lot of people accord the potential of models to more computing power and
data rather than better research (Bansal et al, 2022).

GenAI leverages statistical models and complex ones to generate new content imitating the traits and
patterns of training data (Mariani, 2022). These models may cover probabilistic approaches like
“Variations Auto-encoders and Autoregressive model, or Diffusion models and Generative Adversarial
Networks, or Reinforcement Learning Human Feedback (RLHF)” (Zeng et al, 2021). GenAI has gathered a
lot of attention over the years for its great performance in different applications related to video, text, and
image generation (Muneer and Fati, 2020).

Based on the foundation of the transformer model, these models suggest excellent capacity to generate and
process manual content with the use of big training data for different topics (Hassani and Silva, 2023). To
understand the complex GenAI systems, it is worth focusing on the concepts of generation, variance, and
data.

Data is the core of Gen AI systems. Training models which can capture the given structures and patterns
successfully of the target domain. They need diverse and high-quality training data. Generating
performance is affected by the quality, amount, and symbol of training data (Solaiman, 2023). In addition,
labeled, large-scale datasets available enable the growth of more coherent and accurate samples, while
biased or restricted training data may result in sub-optimal results (Tan et al, 2020; Wach et al, 2023).

Gen AI uses knowledge achieved from training data to generate samples with the same patterns
(Goodfellow et al, 2020). These models can capture distributions of training data and create realistic and
reliable samples with properties which are consistent with actual dataset (Che et al, 2017). The process of
generation consists of latent space exclamation, adversarial training, and autoregressive modeling (Shafani
et al, 2019; Mukherjee et al, 2019; Morrison et al, 2021).

Another important factor to define the quality and diversity of sample generation is variance, which
suggests variability in samples generated (Kaushik et al, 2020). Repetitive or similar samples are generated
by low variance of systems related to Gen AI systems, resulting in high variance and poor generation. It
may result in unrealistic, incoherent, and diversified samples (Yang and Lerch, 2020). It is challenging to
strike the balance between fidelity and variation in Gen AI, as it needs handling of trade-off among using
and exploring learned distribution of data (Geneva and Zabaras, 2020; Cohen et al, 2007; Xu et al, 2021).

It is important to understand and regulate the relationship between data generation and variation for
developing efficient GenAI solutions (Dhoni, 2023).  It consists of dealing with issues like mode collapse,
dataset biases, and managing exploitation and exploration (Vigliensoni et al, 2022; Kossale et al, 2022).
GenAI systems may generate diversified, realistic, and high-quality samples corresponding to desired
applications and aims by making training data refined to optimize regulation patterns (Ding et al, 2019).

It is important to evaluate the diversity and quality of generated samples to assess the overall performance
of the models (Bandi et al, 2023). Here are some of the evaluation techniques for assessing the diversity,
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quality, and authenticity of samples generated  

●       Inception Score (IS) is a well-known evaluation metric. It measures the quality of samples generated
based on diversity of classes generated and visual appeal. Higher IS score suggests better diversity and
quality of samples generated (Barratt and Sharma, 2018).

●       Visual inspection is a subjective evaluation approach where human users or experts determine the
samples generated and qualitative feedback (Chen et al, 2018).

●       “Fréchet Inception Distance (FID)” is used to compare generated and real samples by estimating
Fréchet distance between their features gathered from the Inception model which is generated earlier
(Obukhov and Krasnyanskiy, 2020).

Figure 4 illustrates a typical design cycle of Gen AI. The development cycle of Gen AI may be classified
into four steps (1) defining the problem; (2) selecting or developing models from scratch; (3) aligning and
adapting the model or fine-tuning, when needed; and (4) optimization and deployment (Schmidt, 2023).

Figure 4: Schematic diagram of Gen AI Design Process. Source – Hadi et al (2024)

The first stage entails deciding the nature of the target model by GenAI. For instance, is the target to
improve performance of various tasks or just one task? The next stage is model selection. This way, the
developer has to decide whether to use the current model for application or pre-training the model from the
beginning (Muse et al, 2023). The developer can choose general techniques like transformers, RNNs, or
pretraining the model or focusing on creation models. They can cover more nuanced modifications for
using the model (Foster, 2022). Following the second stage is an iterative stage to adapt and align the
model for the selected scope (Wang et al, 2023). It consists of steps related to one-shot learning, zero-shot
learning, or fine-tuning based on scope (Zhong et al, 2021; Dang et al, 2022). The final stage is optimizing
and deploying the target application (Liu et al, 2023).

Prompting

Prompt Engineering has emerged with Large Language Models. Prompts refer to instructions offered to
LLMs to follow certain roles, automated processes, and ensure that output is of high quantity or quality
(Liu et al, 2023). Prompt engineering refers to wording and designing of prompts specified to LLMs to get
the desired response. Hence, writing a prompt properly is very important when it comes to using LLMs to
perform tasks in the best possible way (Oppenlaender, 2024).

While some formal approaches like directing LLM for some tasks (Explicit guidelines), Formatting with
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example (giving sample question and answer and telling LLM to give an answer similarly), System-wide
instructions (asking a question to answer from LLM), Control tokens (using special keywords to get an
answer through a prompt while considering special criteria), and iteration and interaction (to reach robust
answer by fine-tuning on each response) (Xue et al, 2023). Various frameworks have been proposed in the
position of prompt patterns. These generic patterns target a certain category like input semantics and
prompt improvement. This study aims to present some commands to enable users to make the most of the
capabilities of LLMs from a generic point of view (Yang et al, 2023).

●       Defining the context – It must be the first prompt for LLM. An example may be, “Act as a Lawyer”,
“Act as a Doctor”, “Act as an engineer”, or “Act as a Python programmer”. One can define the role and
direct the LLM to give replies or perform tasks as a human when information is provided (Singh et al,
2022). Context can also be provided to give a background information about the conditions to work for
LLMs. For example, “We are an organization involved in mobile app development”. It can be followed
up with tasks to perform, actions, and steps to follow (Santu and Feng, 2023).

●       Prompt generation – Asking the model to generate prompts for a specified task is another interesting
command (Zamfirescu-Pereira et al, 2023). This way, LLMs can generate optimized prompts for
performing some tasks. For example, “You are an LLM and expert in creating prompts. Generate the
best prompts to gather vital data from time series information.”

●       Chain of thoughts – In the context of “Language Models (LM)”, prompts related to chain of thoughts
refer to providing a range of partial sentences or prompts to guide the connected or coherent text.
Rather than offering individual prompt, a chain of thoughts consists of giving various prompts to keep
LLMs to generate text following a certain line of narrative (Diao et al, 2023).

In-context learning is a concept in prompt engineering in terms of “teaching” the LLM to act specifically
(Dong et al, 2022). A typical scheme is zero-shot inference in which LLM can perform a certain role
(Kojima et al, 2022). It is in the context of an existing task and LLM can be guided to perform a task
without giving a sample solution for the same. An example of this kind of prompt is classifying tweets. A
user needs to provide the text and ask the same to classify it as negative or positive. One-shot inference is
another kind of prompting (Liu et al, 2022). A user can give an example in this case to the LLM and ask
the same for performance.

For example, a user may provide a tweet sample in tweet sentiment analysis and information to the LLM
that sentiment is positive and offer a second tweet. Few-shot inference is the third kind of prompt. In this
context, the user gives a few examples of solutions to teach the LLM about the operation to be performed
by the user (Liu et al, 2023). For the example of sentiment analysis, it would be offering tweets suggesting
its sentiment and positive sentiment. Finally, the LLM could be used for classifying tweets. In-context
learning could be used to “fine-tune” the LLM for certain tasks to be performed in application (Hu et al,
2023).

Negative Prompting

It directs the LLM about the prompt’s aspect that it needs to avoid excluding or generating in the process
of generation (Miyake et al, 2025; Liu et al, 2022). With negative prompts, one can fine-tune the findings
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generated by LLMs against a prompt while keeping it generic (Ma et al, 2022). Negative prompting
enables control of output generated by the model while preventing inappropriate or harmful content. For
example, “Don’t write anything which is factually wrong, harmful, or offensive.” With this prompt, the
model will not generate text which could be inaccurate, harmful or offensive. When testing text-based
image translation, negative prompting was found to be helpful when it comes to work with texture-less
images (Tumanyan et al, 2023). In addition, this kind of prompting when working on image or text
generation can be adopted to Muse and other image generation methods (Chang et al, 2023).

Visual Prompting

Visual prompting refers to using non-visual or visual images when offering paths to a model along with
simple text prompts (Chen et al, 2023). The aim is providing a starting point to an AI model or reference or
example which can be used for the specific task. It can be made possible to modify the image offered or
generate something which is similar in color, texture, or style (Bar et al, 2022). It can generate content
closer to the expectation of the user from the use of generative AI.

Visual prompting could be defined with an image-based example like giving an image of an office and
asking it to generate a different theme, maybe in a different color or nature-centric style (Jia et al, 2022).
Visual prompting enables better control over the output generated and findings in a more accurate way. It is
worth noting that visual prompting is not associated only with images, which is widely being explored for a
lot of applications, such as, composition of music (in which supplied piece of music could be used as
reference), text generation (generating something on the basis of text to copy the writing style), game
development, and augmented and virtual reality (Chakrabarty et al, 2023; Volum et al, 2022; Hegde et al,
2023).

CHALLENGES AND FUTURE DIRECTIONS

After review of different methods, this chapter focuses on various major challenges and future research
directions. Irrespective of focusing on automation of optimization processes, this study identifies human
interventions in current approaches, especially in designing hyperparameters related to algorithms, which
limit practical value and challenge claims related to automation.

In the Fixed Structure category, some of the methods need users to design topologies related to systems
based on expertise. Even though some studies determine their models across various designs (Zhao et al,
2025; Yin and Wang, 2025), it is not guaranteed that these configurations meet the needs of all targeted
applications. Textual hyperparameters also appear constantly in different approaches. For instance, prompt
templates are used for optimizer, evaluator, and gradient estimator in TextGrad and the ones in ADAS are
designed with lack of proper design or sensitivity analysis (Hu et al., 2024; Yuksekgonul et al., 2025).

 

There are also numerical hyperparameter designs and bootstrap samples are persistent, which cannot be
automated (Khattab et al, 2023). Manual configuration is needed also in flexible structure approaches
which are seemingly automated, including MAS-GPT as evidenced by prompt templates (Ye et al, 2025).
Irrespective of efforts applying meta-learning to optimize evaluator, human intervention is needed to craft
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the prompts of meta-learner. To move ahead for automated optimization, like neural network training,
future research is needed to reduce dependence on both numerical and textual hyperparameters. For any
hyperparameter, complete sensitivity analyses are needed to know robustness and behavior of each
approach.

Burden optimization is quite more challenging for compound AI systems as compared to tuning simple
models. Current approaches resort to several workarounds, resulting in increased computational cost.
TextGrad and other approaches in feedback learning need various LLMs to approximate a single step.
Even though approaches like ADAS and Trace use global LLM are needed in each step of optimization,
they should embed widespread context, which enhances token throughput (Hu et al, 2023). As these
approaches usually depend on branded models, they suffer increased cost of API (Achiam et al, 2023). On
the other hand, numerical approaches based on signals often use open-source LLMs to prevent API costs.
Usually, these models need fine-tuning for better performance, while changing the burden of resources
related to GPU. Hence, developers face the tradeoff among GPU cost and API needs.

In addition, there is also a rise in computational expenses in inference. By focusing majorly on overall
system performance, existing approaches often ignore the need to regularize complexity of the system,
causing unbounded consumption of resources at runtime. Even though a few approaches have encouraged
simpler designs, their scalability and applicability in deployments should be tested (Zhang et al, 2023; Liu
et al, 2022). Hence, it is suggested that future studies should propose efficient optimization models and
device key ways to constrain complexity of the system without affecting performance.

There is limited experimental scope in this study. Compound AI systems are supposed to address complex
situations. Future studies may investigate their efficiency in more challenging roles.  In this field, studies
focus majorly on their proposed approaches on widely used datasets for individual LLMs like code
generation, MMLU, and commonsense reasoning” (Cobbe et al, 2021; Chen et al, 2023; Austin et al,
2021). Though these evaluations suggest overall efficiency, it is worth covering benchmarks covering more
complex roles. For instance, there are various tasks related to various LLMs in the system to discuss and
cooperate. Given the large-scale use of compound AI systems, for example, healthcare systems embedded
as nodes, it is worth evaluating the performance of algorithms where humans act as nodes in the system.

While promising empirical findings to have been observed in NL Feedback, there is a lack of theoretical
assurance. For instance, textual gradient has been convergent, and classical gradient is supported by formal
proofs of convergence (Hutzenthaler et al., 2021). Those proofs offer a strong foundation for constant
advancement of optimizing individual models. Hence, future studies should provide convergence and
analyze optimally to learn through feedback, which offers more in-depth knowledge to promote theoretical
underpinnings of the field.

While safety issues and defenses have been studied widely, including jailbreak attacks and their control on
LLMs (Yi et al, 2024) and manual AI pipelines to minimize harmful outputs and prompts (Zhou et al,
2025), the attack surface expands significantly in compound AI models (Banerjee et al, 2024). For
example, privacy-preserving models may still leak sensitive information when designed as a larger system
component (Debenedetti et al, 2024).
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In addition, since compound AI systems are executed and embodied as code in the enterprise settings,
latent modes may not be detected and undermine reliability of systems, even without explicit attacks.
Research extends ahead of downstream performance on compound AI systems, and it has addressed
execution efficiency so far (Zhang et al, 2025), with small attention given to system-led safety or alignment
(Zheng et al, 2025). Safeguarding optimization and mature alignment available for individual models need
future studies to extend the strategies related to compound solutions to manage capability improvements
with guarantee for safety (Dai et al, 2023).

There is also a lack of widely adopted and standardized library support in this field. Even though DSPy,
TextGrad and other maintained libraries have become popular among practitioners, still a lot of works have
adopted optimization of compound AI systems with self-crafted, custom databases (Khattab et al, 2023;
Yuksekgonul et al., 2025). While frameworks dominate training of individual models like PyTorch and
TensorFlow (Paszke, 2019; Abadi et al, 2015), best practices are still being developed for optimizing and
adopting compound AI systems. Future studies must focus on comparing and benchmarking current
libraries for optimizing compound AI systems. Those efforts could help in improving and building clear
guidelines for researchers and developers (Novac et al, 2022).

CONCLUSION

This study provides comprehensive insights to emerging challenges, trends, and potentials of compound AI
systems, integrating LLMs with retrievers, agents, visual encoders, orchestrators, and symbolic planners.
By mapping the existing research frameworks and landscape, this study places compound AI systems as
the next point of inflection in AI development, enabling transition from monolithic, static models to
context-based and modular systems that are capable of adaptive learning, reasoning and coordination. The
study has re-entered the optimization models, architecture, human-in-the-loop, and multimodal extensions
defining the new generation of AI programs that can address complex issues like software validation,
automated research, healthcare systems, and scientific discovery.

This study contributes by highlighting the shifting of compound AI systems towards addressing the
limitations of individual LLMs. While traditional LLMs rely completely on autoregressive prediction of
token restricted to static corpora and fixed context windows, compound systems rely on distribution
intelligence and augmentation to achieve combined cognition. Retrievals are used by these systems for
factual evidence, planners for adaptive routing, and agents for executing decisions, causing smart
architecture like reasoning decomposition. From linear processing to orchestrated intelligence based on
memory, multimodality, and reasoning, there is a paradigm shift marked by specialized modules.

In compound AI systems, current optimization models are widely classified into flexible and fixed
structural systems from a methodological point of view. Pre-defined topologies are widely used by fixed
structures depending on gradient-boosting and reinforcement learning techniques for aligning subsystems.
In contrast, flexible structures adopt feedback loops dynamically with reinforcing natural language. In
addition, natural language (NL) based gradient boosting and feedback optimization is identified as
promising ways to align AI without backpropagation. In addition, there is an evolving notion of
optimization, i.e., from numerical convergence to coordination and semantic consistency. They have shown
wider redefinition of the meaning of learning in compositional designs.
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There are various core challenges pointed out in this study along with significant advancements. Over-
dependence on manual tuning is one of the major problems, contradicting the goal of automation. The
numerical and textual hyperparameters are designed to demand expert intuition, resulting in reproducibility,
subjectivity, and inefficiency issues. Like backpropagation in neural networks, achieving complete
optimization has been a vital pursuit for the research. In addition, performance efficiency can be balanced
with scalability in computation. While powerful, compound systems often suggest computational overhead
because of constant LLM calls and orchestration in feedback loops, which inflate carbon footprints and
token-based processing. Hence, cost-aware, lightweight architectures are needed to focus on modular
efficiency.

The study also highlights the gap between innovation and standardization in compound AI systems.  When
open-source tools like Llama, DSPy, etc. have democratized access to designing the workflow for
compound AI solutions. Depending excessively on proprietary environments, APIs generate challenges to
reproducible research and limit testing with LLMs. The community needs a unified environment like
TensorFlow or PyTorch for optimizing compound AI systems, supporting retrievers, interoperability among
various agents, and evaluators. Building such a standard would improve benchmarking, reproducibility, and
scalability to enable researchers to compare systems in a transparent manner.

The dimensions of interpretability, safety, and ethical aspects also call for increased attention from
scholars. With the rise in complexity of compound AI systems, there is a rise in attacks, generating new
risks associated with adversarial attacks, privacy leaks, and vulnerabilities in pipelines. Unlike impartial
LLMs, compound systems include interaction of components which may amplify or propagate unsafe
outputs. Multi-level alignment is needed to go beyond “reinforcement learning” to system-wide
reinforcement learning to ensure interpretability, safety, and accountability with the whole orchestration
chain.  Strong defensive layers like calibrated limitations, verification of context, and rule-oriented
guardrails must be entrenched at every level to comply with applications.

This study was based on a survey of recent advancements when it comes to optimize compound AI
systems with components and tools. This study also proposed formal approaches to enable structural
analysis of system configurations. This study examines current approaches across various core areas, while
highlighting trade-offs and key trends, such as, NL interface, computational expenses, and problems in
generalizing and scaling. It also identifies open challenges and discusses future research directions.

This study also observes some limitations. First, compound AI systems are not defined universally. This
study covers works which identify themselves as optimizing LM systems or multi-agent systems, without
systematic analysis of conceptual differences and overlaps. Secondly, this study focuses majorly on
approaches which optimize systems of various nodes explicitly to exclude traditional techniques for prompt
optimization for individual LLMs. This field is rapidly evolving, even during the preparation of this study.

When it comes to implications, the study reveals socio-technical aspects of AI in redefining workforce
education, scientific innovation, and productivity. Empirical evidence related to improving multimodal
diagnosis and developer throughput systems promote clinical decisions suggesting tangible effects of
orchestration-based intelligence. However, responsible governance is needed with the same power
demands. As organizations embed the mission-critical pipelines of AI, the ethical allocation between
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machine autonomy and human oversight is needed. There is a need to codify a clear framework for
accountability to ensure transparency in complex AI decisions.

Various trajectories are emerging with the perspective of research. First, the autonomous system is
evolving with rise in interest, where compound AI agents co-optimize and collaborate their behavior with
self-improvement meta-learning. Such developments could promote innovation, resulting in redesigning AI
systems. In addition, differentiable programing and reasoning are needed to be integrated into compound
models to improve both reliability and interpretability. By combining reinforcement learning and symbolic
logic, future compound systems may attain equilibrium between neural intuition and structural knowledge.
Third, the ability to combine textual, auditory, and visual reasoning will dictate competitive AI platforms in
robotics, education, and environmental modeling.

In addition, this study focuses on the significance of benchmarking and evaluation when it comes to
advanced compound AI systems. Current techniques related to assessment are specified to single module
or narrow tasks. Future studies should measure behaviors like failure recovery, fusion of knowledge, and
collaborative reasoning around modules. For instance, cross-disciplinary benchmarks should be designed to
evaluate systems on real-time disaster response or sustainability modeling. These meta-level metrics must
account for interpretability, accuracy, social value and efficiency.

To conclude, this study underlines that optimization of compound AI systems is not just a computational
issue, but a systemic shift on designing intelligence, understanding and deploying them. The field is known
for confluence of philosophical reorientation and technical growth, requiring multidisciplinary efforts for
cognitive studies, ethics and computer science.
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