

*Journal of Advances in
Science and Technology*

Vol. V, No. X, August-2013,
ISSN 2230-9659

A RESEARCH UPON ADVANCEMENT AND APPLICATION OF NEW CUTTING TOOL MATERIALS

A Research upon Advancement and Application of New Cutting Tool Materials

Mr. Shah Ajay Pravinchandra¹ Dr. Dhananjay Gupta² Mr. Naniwadekar Ambaprasad Madhukar

¹Associate Professor, JJ Madgum College of Engineering, Jaysingpur

²Hod & Professor (Retired), Government College of Engg. Kota, Rajasthan

³Assistant Professor, JJ Madgum College of Engineering, Jaysingpur

Abstract – *Many types of tool materials, ranging from high-carbon steel to ceramics and diamonds, are used as cutting tools in today's metalworking industry. It is important to be aware that differences do exist among tool materials, what these differences are, and the correct application for each type of material.*

The various tool manufacturers assign names and numbers to their products. Many of these names and numbers may appear to be similar, but the applications of these tool materials may be entirely different. In most cases the tool manufacturers will provide tools made of the proper material for each given application. In some particular applications, a premium or higher-priced material will be justified.

This does not mean that the most expensive tool is always the best tool. Cutting-tool users cannot afford to ignore the constant changes and advancements that are being made in the field of tool material technology. When a tool change is needed or anticipated, a performance comparison should be made before selecting the tool for the job. The optimum tool is not necessarily the least expensive or the most expensive, and it is not always the same as the tool that was used for the job last time. The best tool is the one that has been carefully chosen to get the job done quickly, efficiently, and economically.

INTRODUCTION

Numerous types of tool materials, extending from high-carbon steel to ceramics and precious stones, are utilized as cutting tools within today's metalworking industry. It is vital to be conscious that contrasts do exist around tool materials, what these distinctions are, and the right application for every kind of material.

The different tool makers allocate names and numbers to their items. A large portion of these names and numbers might seem, by all accounts, to be comparable, yet the applications of these tool materials may be totally diverse. In most cases the tool producers will furnish tools made of the correct material for every given application. In some specific applications, a premium or higher-evaluated material will be legitimized.

This does not imply that the most unreasonable tool is dependably the best tool. Cutting-tool clients can't stand to overlook the steady changes and progressions that are continuously made in the field of tool material technology. The point when a tool change is required or foreseen, a performance examination

ought to be made before selecting the tool for the employment. The ideal tool is possibly the slightest unmanageable or the most costly, and it is not dependably the same as the tool that was utilized for the occupation keep going time. The best tool is the particular case that has been painstakingly decided to finish the occupation rapidly, effectively, and financially.

A cutting tool must have the accompanying qualities keeping in mind the end goal to handle exceptional quality and temperate parts:

1. Hardness: Hardness and strength of the cutting tool must be administered at lifted temperatures.. likewise called hot hardness.
2. Strength: Toughness of cutting tools is required with the goal that tools don't chip or break, particularly throughout intruded on cutting operations.
3. Wear Resistance: Wear resistance implies the accomplishment of satisfactory tool life before tools need to be traded.

The materials from which cutting tools are made are all typically hard and solid. An extensive variety of tool materials are accessible for machining operations, and the general arrangement and utilization of these materials are of investment here.

The interest for cost effectiveness in generation and the development of new items running generally in unpredictability, material composition, estimate, and surface finalize have obliged industry to improve new cutting materials and to receive new machining methods for enhancement of the machining process. New materials have likewise been developed and embraced for cost and performance enhancement in high-speed machining conditions (HSM), particularly high cutting speed and higher nourishes. Moreover, new materials are utilized additionally as a part of dry cutting which is coming to be more famous. It is well realized that the machining process is affected by machining conditions as well as the coolant system utilized also. Assuming that machining might be carried out dry (DC) without coolant, a huge cost sparing is attained. The address that emerges is this: by utilizing new cutting tool materials or coatings, can the coolant be totally dispensed with, or would we be able to minimize coolant utilization in metal cutting without misfortune in productivity.

Moreover, and predominantly because of the close net technology, items are machined straightforwardly to last shape and measure after hotness medication. This obliges hard cutting (HC) of the workpiece and depends particularly on the characteristics of the cutting tool materials and cutting conditions.

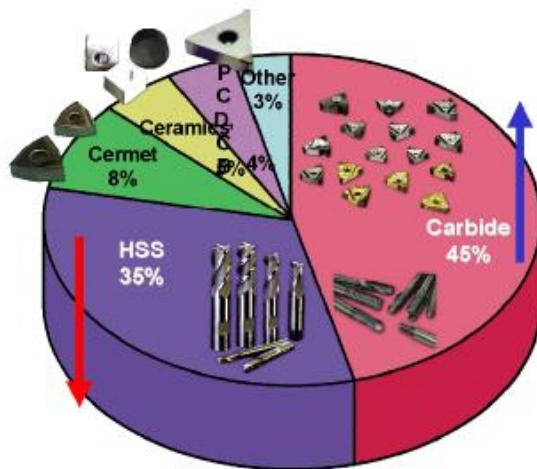


Figure 1: Breakdown of World Cutting Tool Materials 2001

The development of new carbides, particularly PVD and CVD coatings, quickened the swap of HS cutting tools (Figure 1). While in 1990 the utilization of HSS still was higher than carbide, in 1994 the qualities were practically the same. The estimation is that in the year 2000 the utilization of the different carbide evaluations arrived at more than half, and the utilization of HS

diminished to in the ballpark of 40%. Throughout this period the utilization of other cutting tool materials, such as CBN, PCD, Si₃N₄, and ceramics arrived at in the ballpark of 8% by the year 2000. The reinstatement of drills, saws, reamers, also little processing tools made HS the primary stadium of this change. Today new submicron hardmetal evaluations are steadily displacing more HS in drills and endmills.

Just about 80% of all machining operations today with carbide tools are carried out utilizing CVD and PVD coated tools. While the utilization of coating for turning began to start with of the 1970s, the application of coating for processing quickened from the center of the 1980s. CVD coatings are principally utilized for turning (85%). After the first presentation of comparable CVD coatings for processing, PVD coated supplements are currently for the most part connected. Uncoated carbide evaluations are restricted in their hardness and hot hardness and, subsequently, the most extreme cutting speed is generally low. Utilizing coated carbide grades lessens the strength somewhat, yet fundamentally makes strides the hardness, the chemical dependability, and the resistance to plastic deformation and assembled up edge.

The utilization of cermet with enhanced hardness empowers considerably higher cutting speeds than with the coated materials, however limits the effect strength because of decreased durability and cutting-edge strength. Today the utilization of coated cermet grades enhance surface unpleasantness for far and away superior tool life. The utilization of CBN (Cubic Boron Nitride) and PCD (Poly Crystalline Diamond) tackles particular issues, for example, machining of hardened steel and nonferrous material, separately. Ceramic tools dependent upon oxide and non-oxide nitrides and carbides are utilized for high-speed machining and fulfilling applications in light of the low ceramic durability and edge contributing roughing applications. Moreover, ceramic materials dependent upon aluminum oxide (Al₂O₃) and silicon nitride (Si₃N₄) have been developed to enhance machining of solid metal and some high-temp compounds. Moreover, ceramic materials dependent upon aluminum oxide (Al₂O₃) and silicon nitride (Si₃N₄) have been developed to enhance the machining of solid metal and some high-temp compounds.

TOOL STEELS AND CAST ALLOYS

Plain carbon tool steel is the eldest of the tool materials going back several years. In straightforward terms it is a high-carbon (steel that holds around the range of 1.05% carbon). This high carbon content permits the steel to be hardened, offering more terrific resistance to grating wear. Plain high-carbon steel served its reason well for a long time. In any case, on the grounds that it is rapidly over tempered (relaxed) at moderately low cutting temperatures (300 to 500° F).. it is currently infrequently utilized as cutting- tool

material aside from in indexes, saw sharpened pieces of steels, etches, etcetera. The utilization of plain high-carbon steel is restricted to low-heat applications.

High-Speed Tool Steel The need for tool materials that could withstand expanded cutting speeds and temperatures accelerated the development of high-speed tool steel (HS). The major distinction between high-speed tool steel and plain high-carbon steel is the expansion of alloying elements to harden and strengthen the steel and make it more impervious to high temperature (hot hardness).

A percentage of the most usually utilized alloying elements are manganese, chromium, tungsten, vanadium, molybdenum, cobalt, and niobium (columbium). While each of these elements will include certain particular alluring attributes, it could be for the most part expressed that they include profound hardening competence, high hot hardness, resistance to rough wear, and strength to high-speed tool steel. These qualities permit moderately higher machining speeds and enhanced performance over plain high-carbon steel.

The most widely recognized high-speed steels utilized essential as cutting tools are partitioned into the M and T arrangement. The M arrangement speaks to tool steels of the molybdenum sort, and the T arrangement speaks to those of the tungsten sort. In spite of the fact that there appears to be an incredible arrangement of closeness around these high-speed steels, every one serves a particular reason and offers noteworthy profits in its unique application.

An imperative indicate recall is that none of the alloying elements for either arrangement of high-speed tool steels is in bounteous supply and the cost of these elements is soaring. Furthermore, U.S. makers should depend on outside nations for supply of these extremely paramount elements.

A portion of the high-speed steels are currently accessible in a powdered metal (PM) structure. The contrast between powdered and ordinary metals is in the method by which they are made. The majority of customary high-speed steel is spilled into an ingot and after that, either hot or frosty, attempted to the fancied shape. Powdered metal is precisely what its name demonstrates. Fundamentally the same elements that are utilized as a part of traditional high-speed steel are ready in an extremely fine powdered structure. These powdered elements are deliberately mixed together, pressed into a kick the bucket under to a great degree high weight, and afterward sintered in a barometrically controlled heater.

HS Surface Treatment Many surface medicines have been developed in an endeavor to expand tool life, decrease force utilization, and control different considers that influence working conditions and costs. Some of these medicines have been utilized for a long time and have demonstrated to have some esteem. For instance, the dark oxide coatings that normally show up on drills and taps are of worth as an obstruction to development on the tool. The dark oxide is fundamentally a "filthy" surface, which demoralizes the development of work material.

One of the later developments in coatings for high-speed steel is titanium nitride by the physical vapor affidavit (PVD) method. Titanium nitride is stored on the tool surface in one of numerous distinctive sorts of heater at moderately low temperatures, which does not essentially influence the hotness medicine (hardness) of the tool being coated. This coating is known to develop the life of a cutting tool fundamentally or to permit the tool to be utilized at higher working speeds. Tool life could be augmented by to the extent that three times, or working speeds might be expanded by up to half.

Throws Alloys The utilization of alloying elements in high-speed steel, primarily cobalt, chromium, and tungsten, enhanced the cutting properties sufficiently that metallurgical scientists developed the throws alloys, a group of these materials without iron.

A run of the mill composition for this class of tool material was 45% cobalt, 32% chromium, 21% tungsten, and 2% carbon. The motivation behind such alloying was to acquire a cutting tool with hot hardness better than that of high-speed steel.

The point when applying throws amalgam tools, their weakness ought to be remembered, and sufficient backing ought to be furnished constantly. Throws alloys furnish high scraped area resistance and are in this way advantageous for cutting layered materials or those with hard incorporations.

UNCOATED CARBIDE GRADES

Different cutting tool materials are characterized in worldwide models. The most well known and created designation of materials is given in the ISO 513 standard. The worldwide standard isolates all cutting tool materials as per their application, by utilizing three bunches, P, M, and K, as indicated in Figure 2. Bunch P incorporates carbide reviews for machining ferrous material typically with long chips. More level ISO P numbers (e.g. P01) have higher hardness because of the higher rate of carbide, while the higher numbers (e.g. P40, P50) have more folio, that furnishes enhanced sturdiness for overwhelming

obligation operations, interfered with cuts, and machining operation with higher affect. At hoisted temperature the hardness of cemented carbide diminishes, and, then again, as the folio content increments the strength diminishes. Moreover, the cutting edge strength of standard carbides—and even the vast majority of the coated carbides is excessively low for the effect and weight included, particularly in hard cutting conditions. Carbide reviews with a diminishing folio part are more suitable for high-speed, hard- and dry-cutting, however require an alternate cutting edge geometry. An extra change of hardness at higher temperatures is accomplished by utilizing a higher rate of TiC and TaC.

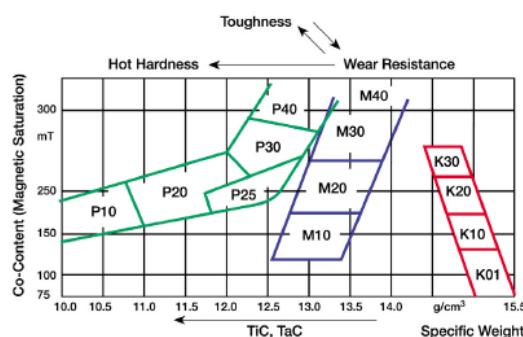


Figure 2: Carbide Grades According to ISO 513 Composition and Properties.

Cermet reviews with TiCN, TiC, TiN and Co, Ni and Mo as a folio are more suitable for dry cutting and high cutting speeds, particularly in fulfilling conditions. They escape constructed up-edge, however are not suitable for machining extremely hard materials and in semiroughing or roughing conditions.

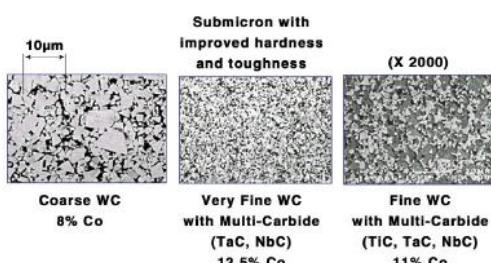


Figure 3: Uncoated Carbides - Coarse, Fine and Very Fine Submicron Substrates.

Figure 3 shows the structure of a coarse grain measure carbide of a typical evaluation (1-2 mm) and a submicron grain measure (0.3-1 mm) carbide grade tool material. While the thickness (14.9 g/cm³) is the same, the hardness is expanded from 1600 (HV30) to 1800 (HV30), the transverse burst strength builds from in the ballpark of 2000 to 3000 N/mm², furthermore the squeezing strength from 5400 to 6000 N/mm². Along these lines, the new carbide reviews made of powders not exactly 1 mm grain estimate, and significantly nanopowder sizes, are utilized to enhance performance and tool life.

The utilization of carbide evaluations with exceptionally coarse powder might expand the break strength because of troubles of breaking the grains themselves, however both the hardness and transverse break strength diminish. Along these lines, these evaluations are just handy as a substrate for coated embeds and never as uncoated evaluations for machining. The examination of hardness and crack durability (K1C) of standard carbide grades, cermets, and the submicron evaluations.

For each of the three cutting tool material assemblies, the measured crack sturdiness (K1C) is lower with expanded hardness because of the higher rate of carbides and nitrides and less folio. Be that as it may, the submicron reviews with more modest grain size and higher hardness give a much more terrific resistance to effect, interfered with cuts, and also expanding the resistance to breaks or chipping included in hard- or dry-cutting. Doping with vanadium carbide or chromium carbide minimizes the conversion of the submicron WC coarsening throughout sintering for realizing uniform grain estimate structure.

NEW OXIDE, NITRIDE, AND CERAMIC MATERIALS

Ceramic tools are by and large utilized for high-cutting speed, get done machining of ferrous alloys or machining of different throws iron workpieces. They can, on the other hand, likewise be utilized adequately for machining extremely hard materials with hardness up to HRC 63, however at more level or medium cutting speed and on greatly inflexible machine tools. Aluminum oxide with up to 40% TiC, and on the other hand with up to 30% ZrO₂, are two prominent ceramic tool materials. Immaculate aluminum oxide, while extremely hard, is likewise weak. Alloying it with TiC or ZrO₂ increments its durability, steadiness, and thermal conductivity without genuinely bargaining hardness.

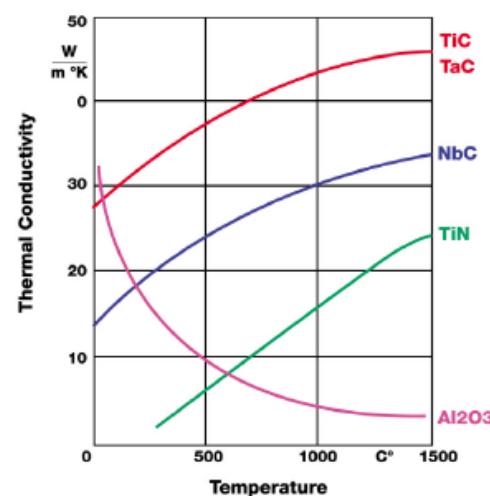


Figure 4 : Thermal Conductivity for Various Materials as a Function of Temperature.

Applications, for example, turning of white throws iron (HRc 55) with carbide and ceramic tools demonstrated that ceramic, with higher hardness and scraped spot resistance, performs superior to the carbide. On the other hand, because of more level strength, ceramic tool life is a great deal more delicate to undeformed chip thickness than carbide tools.

For nickel base alloys with hardness up to 48 HRc, submicron reviews with TiAlN coating, CBN, and silicon carbide stubbles reinforced Al₂O₃ are utilized. Stubble materials are utilized due to the joined durability, hardness and chemical strength at high temperatures. Silicon carbide stubbles with normal breadth of 0.5 microns and length up to 20 microns are utilized. The toughening component is dependent upon the split resistance of the silicon carbide-Al₂O₃ interface. For solid metal machining, embeds made of silicon nitride as beta or alpha strong result are utilized for both turning and processing applications.

In the hard machining of ferrous alloys whose matrix is dominantly martensitic or whose hardness is in the go of HRc 63 to 70, cubic boron nitride (CBN) is the main decision. CBN is the second hardest known material (Knoop hardness 4700 kg/mm²) after precious stone. It is transformed by the structural conversion throughout sintering of hexagonal Bn to its cubic structure at high temperature (between 1400°C and 2000°C) and high weight (50 to 70 kbar) blended with matrix dependent upon borides, carbides and nitrides, like precious stone union. As a cutting tool material, it is accessible just in the polycrystalline structure, with and without a cemented carbide base underpin. The thickness of the CBN layer in the previous is 0.5 mm. The carbide base furnishes a backing with high-modulus of versatility back for the hard and fragile CBN layer.

There are a couple of sorts of CBN compositions with fluctuating measures of folio. A standout amongst the most prevalent, for illustration, is the Ib50 (Debeers, with half CBN) utilized with different cutting tool geometries. This composition is proposed for utilization on low stock evacuation applications (0.5 mm) and complete the process of machining of hard, ferrous materials with 45 to 60 HRc. In this application a low CBN content composition is utilized (half) to minimize warm exchange to the cutting edge. The majority of the hotness streams into the chips and the workpiece surface, consequently creating a softening impact and permitting an expansion in cutting speed. (CBN material has high thermal conductivity.) In machining throws iron and chilled throws iron embeds with a

higher CBN substance and higher mass hardness are utilized.

CBN is chemically more stable than precious stone when utilized for machining ferrous alloys. It has exceptional thermal solidness, up to 1200°C: the temperature could be further expanded by diminishing the polluting influence content with uncommon processing procedures. Contingent upon work material and cutting conditions, CBN tools can perform 5 to 100 times superior to carbide or ceramic tools. The high cost of CBN tools forces performance and budgetary defense in each application with the exception of situations where no other tool material could be utilized (i.e. work materials whose hardness is HRc63). CBN tools are not by and large utilized for machining ferrous materials with hardness beneath HRc 45 with the exception of in situations where the microstructure holds a critical part of martensite. CBN tools could be utilized within turning and, with legitimate tool readiness, in discontinuous cutting, such as in milling.

CONCLUSION

Machining is now in a particular "golden age", where a lot of time, money and effort has been invested to define the best tool for each application. Today for each application the objective of large or small manufacturers is to supply a much optimized tool. One of the most important aspects for the success of the new cutting tools is the *application guide*, because each application needs special recommendations, and in some cases they are contradictory to others.

The economical impact of cutting and machining is increasing, although the near to net shape technologies imply a reduction of the amount of material to be removed in each part. But the demand for elaborate parts and high-end products exceeds all expectations. Consequently the improvement of productivity, tool life and workpiece precision is a main goal for a lot of companies, taking into account respect for the environment as well.

Micromilling is going to be a growing technology where hard milling is going to be applied, with special attention to medical devices. Tool fabrication is another important issue for the application of micromilling technology. For industrial applications, micropowder (0.3 µm particle size) sintered tungsten carbide is used, making two flute endmills of 100 µm in diameter, with an edge radius of 1–2 µm. In any case, the commercial offer is limited and there are no different geometries for different materials, being an important problem because most of the tools are

designed for steel machining. Commercial tools have a well-defined geometry with small tolerances.

REFERENCES

- R. Wertheim "Development and Application of New Cutting Tool Materials" CIRP General Assembly, Montreux, Switzerland, August 1999.
- H. K. Toenshoff, C. Arendt, R. Ben Amor "Cutting Hardened Steel" Annals of CIRP Vol. 49/2/2000 Pages 1-19.
- W. Koenig, Report by WZL, T. H. Aachen, 1994.
- ISO 513: 2004 Classification and application of hard cutting materials for metal removal with defined cutting edges – designation of the main groups and groups of application
- Celaya A, López de Lacalle LN, Lamikiz A (2010) Assisted machining processes. In: Davim P (ed) Metal cutting: research advances. Nova Science Publishers, New York
- Aoyama T, Inasaki I (2001) Performances of HSK tool interfaces under high rotational speed. CIRP Ann Manuf Technol 50(1):281–284
- Beranoagirre A, López de Lacalle LN, (2009) Milling of gamma TiAl intermetallic alloys. AIP Conf Proc 1181:43–50
- M. Marian, Coated silicon nitride based cutting tools, US 6.3257.10, Sandvik AB, 2001.
- C. Marianne, E. Magnus, Silicon nitride cutting tool material, US5914286, Sandvik AB, 1999.
- Zone-Ching Lin, Ship-Peng Lo, "Effect of different tool flank wear lengths on the deformations of an elastic cutting tool and the machined workpiece", *International Journal of Computer Applications in Technology*, vol. 25, no.1, pp. 30 -39, 2006.
- E.M. Trent, and P.K. Wright, "Metal Cutting". Fourth ed. Boston: Butterworth-Heinemann, 2000.