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Abstract — The subjcct of this paper is a relaxation of proper graph colorings - bounded monochromatic
component colorings (BMC colorings). A vertex- coloring of a graph is called a BMC coloring if every
color-class induces monochromatic components containing at most a certain bounded number of
vertices. A proper coloring for instance is a BMC coloring in which every color-class induces
monochromatic components of order one. We investigate three different aspects of BMC colorings.

We investigate extremal graph theoretic problems of BMC colorings. For certain families of graphs we
determine bounds for the smallest monochromatic component, order C, the critical component order,
such that every graph contained in this family accommodates for a BMC coloring with respect to C. We
determine bounds for the critical component order C for graphs with a bounded maximum degree: Every
graph of maxfmum degree at most three admits a BMC 2-coloring with one color-class inducing
monochromatic components of order one and the other color-class inducing monochromatic
components of order at most 22; and every graph of maximum degree at most five admits a BMC 2-
coloring inducing monochromatic components of order at most 1908 in each of the two color-classes.
Additionally we restrict, the graphs to being planar and show that every maximal planar graph (a
triangula- tion) with maximum degree & and containing at most, d vertices of odd degree admits a BMC 3-

coloring inducing monochromatic components of order at. most 2Ad

To almost all proofs related to BMC colorings there is a common denominator: bounded component
transversals of multipartite graphs. Thus we devote the first part of this paper to these transversals, prov-
ing both extremal and algorithmic results. We investigate the smallest number of vertices®(&')that still
guarantees the existence of (an efficient algorithm for finding) a transversal inducing bounded

components in every multipartite graph with partite sets of order at least n(A")and maximum degree at

A/
most A . We further emphasize the importance of transversals inducing bounded components with an
application to the Linear Arboricity Conjecture.

<*

INTRODUCTION Figure 1: The Petersen Graph and a proper 3-
coloring of its vertices. A proper k-coloring of the

Graph Colorings : A graph G is a set V(G) of vertices vertices of a graph G is an assignment, of k colors
and a set E(G) of edges, each connecting a pair of  (often the integers 1,... k) so that no two adjacent,
vertices, its endpoints. We say that the two endpoints vertices get. the same color, sec for instance Figure
of an edge arc adjacent. A drawing that shows the well 1(b) for a proper 3-coloring of the Petersen Graph.
known Petersen Graph can be found in Figure 1(a). The set of vertices receiving color j is a color-class
and induces a graph with no edges, i.e., it is an

independent set of G. So, a proper fc-coloring of the

10 & - 2 vertices of G is simply a partition of V(G) into k

‘"\ ‘"\ independent sets (compare Figure 1(b).
P il Y i,
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(a) Petersen Graph (b) proper 3-coloring
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Figure 2: A partition of the Petersen Graph into three
independent sets.

The chromatic number '\(G) of a graph G is the
minimum k for which there is a ~-coloring of G. One
straightforward reason for a graph to have large
chromatic number is the containment of a large clique
(i.e., a large complete subgraph). Obviously if a graph

G contains a clique of order k, then \(G) & k.
hH g G it holds

-~ Y
that\(H) = \(G). Since the Petersen Graph
contains odd cycles, and an odd cycle requires at
least, three colors in any proper coloring, the
chromatic number of the Petersen Graph is at. least
three. The following proposition states a relation

A(G

Similarly for every subgrap

between the maximum degree )of a graph G

and its chromatic number.

Bounded Component Transversals : Let us recall that
a transversal of a multipartite graph is a subset, of its
vertices containing exactly one vertex from each
partite set. The transversal graph is the graph induced
by the vertices of the transversal. For an

. >

mtegerf — 1We call a transversal an f-be
transversal if the largest, component of the transversal
graph contains at most / vertices.

The main goal of this part of the paper is to guarantee
the existence of bounded component transversals for
multipartite graphs that have large partite sets, with
respect to their maximum degree. Moreover we want
to elaborate on algorithms that even find such
bounded component transversals. It. seems natural
that for some fixed maximum degree, the more
vertices a multipartite graph contains in each of its
partite sets, the more freedom is given to choose a
transversal, possibly inducing only small components
in the transversal graph. We have seen in Proposition
0.2 that the (list.-)chromatic number of a graph can
easily be upper bounded by its maximum degree,
independent of the number of vertices contained in the
graph. Let. us for a moment focus on independent
transversals, i.e., transversals inducing an
independent, set.

Let G be a multipartite graph with maximum

degreeAfor which the number of vertices in each of
its partite sets is lower-bounded by some

value ])(A) depending only on A. In contrast to the
greedy algorithm for proper (list-)colorings, one can
observe that a greedy algorithm for choosing an
independent, transversal of G - choose a vertex ti from
K that is not adjacent to any of the earlier chosen
vertices tj in G, j < is likely to fail. This algorithm can
get. stuck in a partial transversal ti,.. such that every
vertex of V,,;is adjacent to a vertex of £1,..., tk, with k
<m.

Bounded component, transversals have proved to be
very applicable in many areas of graph theory. In this
paper we show an application of bounded component,
transversals in order to get one tiny step closer to a
proof of the Linear Arboricity Conjecture.

Bounded Monochromatic Component Colorings
Sometimes the number of colors available to color a
graph is less than its chromatic number. Therefore
one is forced to relax the properness condition and to
find a good approximation of its properness. Another
good reason to introduce relaxations of proper
colorings is that in some theoretical or practical
situations a small deviation from proper is still
acceptable, while the problem could become
tractable, or in certain problems the use of the full
strength of proper coloring is an "overkill". Often a
weaker concept, suffices and provides better overall
results.

BOUNDED COMPONENT TRANSVERSALS

Let. be a multipartite

G
with V (G) =Wu-. 'U"””. A transversal T of

G is a subset of the vertices in G containing exactly
one vertex from each partite set V*. An f-bc
transversal of a graph with a vertex partition is a
transversal T in which each connected component of
the subgraph induced by T (the transversal graph)

Ag¢(m,n)

smallest integer A such that there exists an

graph

has at most / vertices. Let denote the

771-partite graph G with maximum degree A and
parts of size n and with no f-bc transversal. We

Af(n) = ming,en Ag(m,n)

define in case we do
not. want to restrict the number of parts in the graphs
under consideration and
let Af denote limn—o Af(n)/n |t is not hard to

check that this limit always exists.

Independent  Transversals : Historically the
N Af(m,n .

investigation  of f ( : ) started with  1-bc
transversals, subsequently called independent
transversals. Independent transversals and in
particular the determination of the
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number A1(m, n), for m > 2

and n 2 1received a lot of attention. In a series of

Aq(m,n)

works has been completely determined.

Theorem 1.3. For integers e Z 2and n Z 1the

following holds,

(m—1)n s '
. : 21, if m is odd, and
A1(771,11.) = {’—2(17172).‘

{2(,’,’;'21)1 if m is even.

The upper bound for all m and n has been proved by
Szabo and Tardos for even m in and in is has been
shown that this construction is also optimal for odd in
(adding one more partite set). We give here a

simplified construction showing
n/2 < Ay(m,n) < [n/2]+1 for
m—22>N

only. This yields a tight bound if n is
even. Let G be the graph in Figure 3 (a vertex
represents a whole class of vertices). That is, G is an

r-partite graph with partite sets of size n, 7% = 70 and
each partite setVi.i € [m-2lis partitioned into two
almost equally sized

classes Vi.land )

Vig (ie., |Vii| = [n/2] and |Vi2| = [n/2]) |et

every vertex in part ‘/?32 be adjacent to every vertex

nVitL1 g @ € [m—3]
v

'm—2,2pe adjacent, to every vertex in

and let every

vertex in

‘"‘171. We assume that, the two parts V,-\ and V,,
each contain
nm-— 2 vertices
Um—-1,1Vm—-1.2y---3Um—-1,n and

Um,1,Vm,2, - - - s Um,n, respectively. Further let

every vertex of ‘“be adjacent to 1=3,15

i€(n] ,J€ {1,2}

Figure 3: An ra-partite graph G without an independent
transversal.

Matching Transversals : Let us finally restrict to 2-bc
transversals which we subsequently want to call a
matching transversals. According to Theorem every
multipartite graph G with partite sets of order n
and &(6) = [2n/3] contains a matching transversal. On
the other hand according to Proposition there arc
multipartite graphs with partite sets of order n and

/ A s -
A(G) =n+1 without a matching transversal.
We think that these graphs are in some sense optimal.

Theorem. Every multipartite graph G with partite sets
of order at least two and with maximum

degree A(G) < 2contains a match ing transversal

T, L€, A‘.?(Q) — 2. Moreover there is a linear-
time (in the order of G) algorithm that finds T. We will

investigate Af(r‘ n )for matching transversals (/ =
2). We can construct graphs such that the following
holds.

ALGORITHMIC ASPECTS

Throughout this paper we restrict ourselves to
independent, transversals. We call the running-time
of an algorithm with input graph G polynomial if it is

/ \J
polynomial in the order of G, assuming thatA(G) is
constant. Let G be a multipartite graph with partite
sets containing at least n vertices. The goal of this
paper is to derive a polynomial-time algorithm that
finds an independent transversal of G. In order to do
so we are forced to strengthen the condition on the

partite set sizes from n Z ZA(G)
guaranteed to contain an independent

(for which G is

transversal according to Theorem

/ —— 0 / y 3
to L “(A(G) ) Note here that Alon mentions
that a deterministic polynomial-time algorithm exists
that finds an independent transversal of G even if

Y / '
only n =2 C‘A(G) holds, G being a large
constant. We believe that in a future work our results
can be combined with the techniques of Alon to
obtain an algorithm that finds an independent
transversal in every multipartite graph G with parts

1.1)

v/ / 'l
containing at IeastC‘ -’A(G)many vertices, for

v/ ¢
some constant C Z 2 that is much smaller than
the constant G implicitly given in.

BOUNDED MONOCHROMATIC COMPONENT

COLORINGS

Let us recall the definition of BMC colorings. We say

that a fc-coloring of a graph
Y

is(Cl’ "2*""Ck)-BMC if every
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monochromatic component induced by the vertices of
the zth color-class is of order at most C\, for

L € [L Note that a (1,.., [)-BMC k-coloring
corresponds to a proper “-coloring. We mainly deal
with the two most natural cases of BMC k- colorings.
We say C- symmetric BMC k-coloring (also C-sbmc k-

Y v . &
c oloring) when Ci=C, foric [L-.Similarly
we say C-asymmetric BMC (k,l)- coloring (also C-
ABMC  (k, /)-coloring)  when C; = 1,
1 < ; '
for1 St S k and Cj = C,

for k+1 & J . k + l. For 2-colorings refer
to a C-ABMC (1, l)-coloring also by a C-ABMC 2-
coloring.

In this part of the paper we investigate BMC colorings
of graphs with bounded maximum degree. Symmetric
BMC colorings were first studied by Kleinberg,
Motwani, Raghavan, and Venkatasubramanianby in. In
this paper we focus on BMC 2-colorings. Symmetric
BMC 2-colorings have been studied by Alon, Ding,
Oporowski, and Vertigan and implicitly, even earlier, by
Thomasscn who resolved the problem for the line
graph of 3-regular graphs initiated by Akiyama and
Chvatal. Asymmetric BMC 2-colorings were first
introduced in a joint paper with Tibor Szabo.

In this paper we investigate BMC k-colorings of
bounded degree (planar) graphs, k > 2.

Also Haxell, Szabo, and Tardos in, Linial, Matousek,
Shcffct, and Tardos in, and Matousek and Prfvetivy in
investigated (symmetric) BMC colorings.

Independently Andrews and Jacobson, Harary and
Jones, and Cowen, Cowen, and Woodall introduced
and investigated the concept of improper colorings
over various families of graphs. A ~-coloring is called /-
improper if none of the at most k colors induces a
monochromatic component containing vertices of
degree larger than /. Hence in an improper coloring the
amount of error is measured in terms of the maximum
degree of monochromatic components rather than in
terms of their order. Several papers on the topic have
since appeared; in particular, two papers, by Eaton
and Hull and Skrckovski, have extended the work of
Cowen ct al. to a list-coloring variant of improper
colorings.

Linial and Saks studied low diameter graph
decompositions, where the quality of the coloring is
measured by the diameter of the monochromatic
components. Their goal was to color graphs with as
few colors as possible such that each monochromatic
connected component has a small diameter.

Haxcll, Pikhurko, and Thomason study the
fragmentability of graphs introduced by Edwards and
Farr, in particular for bounded degree graphs. A graph

is called(a‘ f)—fragmentable if one can remove a

fraction of the vertices and end up with components of
order at most /. For comparison, in a C-ABMC 2-
coloring one must remove an independent set and end
up with small components.

The so-called relaxed chromatic number (sometimes
also called generalized chromatic number) was
introduced by Weaver and West. They used
“relaxation” in a much more general sense than us,
requiring that each color-class is the member of a
given family of graphs.

SBMC COLORINGS OF PLANAR GRAPHS

In this section we investigate symmetric BMC colorings
of planar graphs. Due to the Four Color Theorem we
know that every planar graph G admits a proper 4-
coloring, hence sbmc4(G”) = 1. On the other hand
there are planar graphs which cannot be properly
colorcd with only three colors. Moreover for a planar
graph G the determination whether G is properly 3-
colorablc is NP-compilcte, sec Theorem 0.1.

Nevertheless the following simple characterization of
triangulations that arc properly 3-colorable has been
shown by Hcawood.

Theorem : The vertices of a triangulation G are
properly 3-colorable if and only if G is Eulerian.

In contrast to the long and computer aided proof of
the Four Color Theorem, and even its simplification
by Robertson. Sanders, Seymour, and Thomas, there
is a rather compact proof by Cowen, Cowen, and
Woodall not assuming the truth of the Four Color
4 Al &

Theorem that sbniC4(G) = 2
graph G.

for every planar

As mentioned earlier amongst the many results of,
the authors show the existence of planar graphs H\
with arbitrarely many vertices and with maximum
degree at most Six such

that sbmeg(Hyp) = Q vV \V(H; )|). Linial,

Matousek, Shcffct, and Tardos study bounded
monochromatic component, colorings of minor closed
classes of graphs. They show for instance that for

every  planar sbmea(G) =
J "W I|12/°
O( |‘ (G)|"’ . ) and they construct planar graphs
( r 2 /3
vy winSbmea(Ha) = Q(|V (H)[*/3)

For 3-colorings Kleinberg, Motwani, Raghavan, and
Venkatasubramanianby in construct planar graphs

such that SPmea(Hs) = Q(|V (H3)|'/?).
These graphs have Iaprge maximum degree, that
s A(Hs) = Q(|V(Hs)|)

they ask for

graph G,

. Motivated by this
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the following which we want to formulate as a
conjecture.

CONCLUSION

Theory of domination and graph colouring theory are
two important as well as fastest growing areas in
combinatorics. A number of variations of domination
have been introduced by several authors. In this
sequence, Benedict et al. introduced a new variation in
domination, namely, chromatic transversal domination
which involves both domination and colouring. Also
partitioning the vertex set V of a graph G into subsets
of V having some property is one direction of research
in graph theory. For instance, one such partition is
domatic partition which is a partition of V into
dominating sets. Analogously, we here demand each
set in the partition of V to have the property of
chromatic transversal domination instead of just
domination and call this partition a chromatic
transversal domatic partition. Further, the maximum
order of such partition is called the chromatic
transversal domatic number which is denoted by
dct(G).
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