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Abstract – A graph G consists of a nonempty set V (G) of objects called vertices and a (possibly empty) set 
E (G) of two element subsets of V (G), called edges. The set V (G) is called the vertex set of G and E (G) its 
edge set. The number of vertices in a graph G is called its order, and the number of edges is its size. A 
graph of order p and size q is called a (p, q)-graph. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

It has become a tradition to describe graphs by means 
of diagrams in which each element of the vertex set of 
the graph is represented by a dot and an edge e = uv 
is represented by a curve joining the dots that 
represent the vertices u and v. A parameter that 
appears often when studying graphs is the degree of 
vertex. The degree of a vertex u of a graph G, denoted 
by deg G, or simply by deg u or d(u), if the graph G is 
clear from the context, is defined as d(u) = | {v/uv 2 
E(G)} |. A vertex v of a graph G is called even, if its 
degree is even and odd, if its degree is odd. Also, if 
deg v = 0, v is called an isolated vertex, and if deg v = 
1, it is called an end vertex. Also, if e = uv is an edge 
of a graph G such that either deg u = 1 or deg v = 1, 
then e is called a pendant edge of G. 

Two graphs are said to be isomorphic if they have the 
same structure, and at the most, they differ in the way 
their vertices and edges are labeled, or in the way they 
are drawn. 

The complement G of a graph G has V(G) as its vertex 
set, but two vertices are adjacent in G if and only if 
they are not adjacent in G. A graph and its 
complement are shown in Figure. 

 

The graphs Kp are called totally disconnected, and are 
regular of degree 0. A self-complementary graph is 
one which is isomorphic to its complement. A self-
complementary graph is shown in Figure . 

 

We also discuss here those operations on graphs 
that are used in this thesis. In all the definitions 
follows, we assume that, graphs G1 and G2 have 
disjoint vertex sets V1 and V2 and their edge sets as 
E1 and E2 respectively. The union of G1 and G2, 
denoted as G = G1 E G2 has V = V1 E V2 and E = 
E1 [ E2. Join of G1 and G2, as defined by Zykov [31], 
denoted G1+G2, the vertex set consists of V = V 
(G1)[V (G2) and the edge set, all edges obtained by 
joining V1 with V2. In particular, Km,n = Km + Kn. 
These operations, namely union and join of two 
graphs G and H are illustrated in Figure 1.4 and 1.5 
with G = K3 and H = P4. 

 

For any connected graph G, we write nG for the 
graph with n components, each isomorphic to G. 
Then every graph can be written in the form S i niGi 
with Gi different from Gj for i 6= j. To define the 
cartesian product G1 × G2, consider any two vertices 
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u = (u1, u2) and v = (v1, v2) in V = V1 × V2. Then u 
and v are adjacent in G1 × G2 whenever u1 = v1 and 
u2v2 2 E(G2) or u2 = v2 and u1v1 2 E(G1). The 
cartesian product of G1 = P2 and G2 =P2 is shown in 
Figure. 

 

Let graph G has at least one edge. The line graph 
L(G) of G, has E(G) as its vertex set with two vertices 
of L(G) are adjacent whenever the corresponding 
edges of G are adjacent. The line graph of K4 is 
shown in Figure 1.11. We write L2(G) = L(L(G)), and in 
general Ln(G) = L(Ln−1(G)). 

 

The distance d(u, v) between two vertices u and v in G 
is the minimum length of a path joining them if any; 
otherwise d(u, v) = 1. A shortest u−v path is called a 
u−v geodesic. The diameter d(G) of a connected graph 
G is the length of any longest geodesic. 

REVIEW OF LITERATURE: 

A classical subject of metric graph theory that are 
related to geometric questions are that of distance 
regular graphs which are intimately related with 
combinatorial designs and finite geometries. The study 
of low-distortion embeddings of graphs and finite 
matric spaces into l2 or l1 spaces with numerous 
applications in the design of approximation algorithms 
was initiated by Lineal et.al. 

In the mathematical field of graph theory, the 
hypercube Qn is a regular graph with 2n vertices, 
which corresponds to the subsets of a set with n 
elements. Two vertices labeled by subsets W and B 
are joined by an edge if and only if We can be 
obtained from B by adding or removing a single 
element. 

Geometric representations of graphs have been much 
studied for the insight they provide into the graph 
algorithms, graph structure, and graph visualization. 
Linial et.al. Considered the following representation 
problem: for which unweighted undirected graphs can 
we assign integer coordinates in some d-dimensional 

space Zd, such that the distance between two vertices 
in the graph is equal to the L1-distance between their 
coordinates? They (Linial et.al. ) called the minimum 
possible dimension d of such an embedding (if one 
exists), the lattice dimension of the graph, and shown 
that the lattice dimension of any lattice-embeddable 
graph may be found in polynomial time. It is also 
shown that the lattice dimension of any tree is exactly 
dl2 e, where l denotes the number of leaves of the tree. 

Any l-length path can be viewed as a sub-graph of the 
hypercube {0, 1}l by mapping its vertices to the points 
where superscripting stands for repetition of 
coordinates. Similarly, finite portions of the integer 
lattice can be mapped isometrically to a hypercube {0, 
1}dl, by applying the above embedding separately to 
each lattice coordinate. The graphs with finite lattice 
dimension are exactly the isometric hypercube sub-
graphs, also known as partial cubes. 

The partial cube representation of a graph is unique 
up to cube symmetries and, a polynomial time 
algorithm for finding such representations is known 
from the work of Djokovic . Partial cubes arise 
naturally as the state transition graphs of media, 
systems of states and state transitions studied by 
Falmagne et. al. that arise in political choice theory 
and that can also be used to represent many familiar 
geometric and combinatorial systems such as hyper-
plane arrangements. 

The integer lattice can be viewed as a cartesian 
product of paths; instead, one could consider 
products of other graphs. Thus, for instance, one 
could similarly define the tree dimension of a graph to 
be the minimum k such that the graph has an 
isometric embedding into a product of k trees. The 
graphs with finite tree dimension are again just the 
partial cubes. Chepoi et. al.  showed that, certain 
graph families have bounded tree dimension, and 
used the corresponding product representations as a 
data structure to answer distance queries in these 
graphs. Recognizing graphs with tree dimension  k is 
polynomial for k = 2 , but NP-complete for any k > 2. 

Let (Vn, d) be a distance space where d is rational 
valued. Then, (Vn, d) is l1-embeddable if and only if 
(Vn, d) is hypercube embeddable for some scalar. Let 
d be a distance on Vn that is embeddable and takes 
rational values. Every integer for which (Vn, d) is 
hypercube embeddable is called a scale of (Vn, d). 
They also called d is hypercube embeddable with 
scale. The smallest such integer is called the 
minimum scale of (Vn, d) and is denoted by d. Deza 
et.al also established the following Lemma. 

There exists an integer such that d is hypercube 
embeddable for every embeddable distance d on Vn 
that is an integer valued. Deza et.al also initiated to 
study the graphs whose path metric admits some 
properties of the above mentioned embedding and 
accordingly they defined graphs. A graph G is called 
a graph, if its path metric dG is isometrically 
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embeddable. Similarly, a graph G is called a 
hypercube embeddable graph, if its path metric dG is 
isometrically hypercube-embeddable. Equivalently, a 
graph G is said to be hypercube embeddable if its 
vertices can be labelled with the Hamming distance 
between their labels. 

RESEARCH METHODOLOGY: 

A graph G = (V,E) is called a bitopological graph if 
there exist a set X and a set-indexer f on G such that 
both f(V ) and f_(E) [ ; are topologies on X. The 
corresponding set-indexer is called a bitopological set-
indexer of G. We prove the existence of bitopological 
set-indexer. We give a characterization of bitopological 
complete graphs. We define equi-bitopological graphs 
and establish certain results on equi-bitopological 
graphs. We identify certain classes of graphs, which 
are bitopological and define bitopological index (G) of 
a finite graph G as the minimum cardinality of the 
underlying set X. 

Given a graph G = (V,E), we can relate it to different 
topological structures. In 1967, J. W. Evans et.al [8] 
conceived this idea and he proved that there is a one 
to one correspondence between the set of all 
topologies on a set X with n points and the set of all 
transitive digraphs with n points. He established his 
results as follows. Let V be a finite set and T be a 
topology on V . The transitive digraph corresponding to 
this topology is got by drawing a line from u to v, if and 
only if, u is in every open set containing v. Conversely 
let D be a transitive digraph on V ; the family B = {Q(a) 
: a E V } forms a base for a topology on V , where Q(a) 
= {a} [ {b E V : (b, a) E E(D)}. In 1968 T.N. Bhargav 
and T.J. Ahlborn analysed the topological spaces 
associated with digraphs. According to them a subset 
A of V (D) is open if and only if for every pair of points 
i, j E V with j in A and i not in A, (i, j) is not a line in D. 
Sampathkumar  extended this results to the case in 
which the point set is infinite. Sampathkumar et.al  
also investigated the topological spaces associated 
with signed graphs and semigraphs. Let S = (V,E) be a 
signed graph. A subset A of V is an open set in the 
positive E-topology on S denoted by S if and only if u 
E A, uv E E+(S) implies that v E A. Similarly he defined 
negative E-topology (S). He defined the topology V on 
the vertex set V (D) of a disemigraph D = (V,E) as 
follows: A subset S of V (D) is open whenever u E S 
and v E V (D) such that vu is a partial arc, then v E S. 

Hypergraph theory is something different and much 
more generalized concept of graph theory. Given a set 
V of vertices, an edge of a simple graph on V is a set 
of two vertices, while an edge of a hypergraph on V is 
any subset of V . The theory of hypergraphs 
popularized and enriched by many contributions of 
Berge is the extension of theorems about graphs to 
hypergraphs. The problem is to find a suitable 

formulation of the theorems for hypergraphs in such a 
way that they contain the graph as a special case. 

Chromatic index of the hypergraph H of dcsl-graph K1,7 
is eight, equal to the degree of H. Thus, we strongly 
believe that the hypergraphs of dcsl-graphs are graphs 
which satisfy the coloured edge property. In general, a 
hypergraph and its dual hypergraph need not be 
isomorphic. But it happens in the case of 1-uniform di-
graphs. It is interesting to note that, if (G, f) is a 1-
uniform di-graph then, the hypergraph Hf G and the 
dual hypergraph of Hf G are isomorphic. Figure give 
the hypergraph corresponding to 1-uniform path P6 
and Figure depicts its dual graph. Note that the 
hypergraphs in Figure 

 

 

CONCLUSION: 

The theory of isometric set-labeling are rich in theory, 
with many applications. The main motivation to study 
isometric set-labeling is due to the problem in 
communication theory posed by Pierce in 1972. In a 
telephone network one wishes to be able to establish 
a connection between two terminals A and B without 
B knowing that a message is on its way. The idea is 
to let the message be proceeded by some ´address’ 
of B, permitting to decide at each node of the network 
in which direction the message should proceed. The 
message will proceed to the next node if its hamming 
distance to the destination node B is shorter or, at a 



 

 

Archana Kumari 

w
w

w
.i

g
n

it
e

d
.i
n

 

4 

 

 A Study on Graphs 

constant proportionality distance or, at various fixed 
constants of proportionality. The most natural way of 
devising such a scheme is by labeling the nodes by 
strings of subsets of a set X, which amounts to try to 
embed the graph in a dcsl-graph. 

Interesting problems and conjectures are identified in 
both the dcslgraphs, bitopological graphs and 
hypergraph representation of dcslgraphs. They are 
already pointed out in the respective chapters. 
However, we list below some of the most important 
problems which are open for further research and 
investigation. 

Problem 1. Characterize a dispersible dcsl-graph. 

Problem 2. Consider any structure-activity relationship 
R of a molecular graph that has been identified to be 
well correlated with the Weiner index. Is it possible to 
achieve such a correlation using MWeiner index for a 
low cardinality dcsl-sets X as possible? 

Problem 3. For any dcsl-graph G, the dispersivity of 
(G) of G is the least cardinality of a ground set X, such 
that G admits a dispersive dcsl. Also, find Kn. 

Problem 4. Find the necessary condition for a graph to 
be l1-embeddable, k-uniform dcsl-graph. 
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