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Abstract – The problems of testing whether a graph is a median graph, and whether a graph is triangle-
free, both had been well studied when Imrich, Klavžar & Mulder (1999) observed that, in some sense, they 
are computationally equivalent.  Therefore, the best known time bound for testing whether a graph is 
triangle-free, O(m

1.41
), applies as well to testing whether a graph is a median graph, and any improvement 

in median graph testing algorithms would also lead to an improvement in algorithms for detecting 
triangles in graphs. 

In one direction, suppose one is given as input a graph G, and must test whether G is triangle-free.  From 
G, construct a new graph H having as vertices each set of zero, one, or two adjacent vertices of G.  Two 
such sets are adjacent in H when they differ by exactly one vertex.  An equivalent description of H is that 
it is formed by splitting each edge of G into a path of two edges, and adding a new vertex connected to all 
the original vertices of G.  This graph H is by construction a partial cube, but it is a median graph only 
when G is triangle-free: if a, b, and c form a triangle in G, then {a,b}, {a,c}, and {b,c} have no median in H, 
for such a median would have to correspond to the set {a,b,c}, but sets of three or more vertices of G do 
not form vertices in H.  Therefore, G is triangle-free if and only if H is a median graph.  In the case that G 
is triangle-free, H is its simplex graph.  An algorithm to test efficiently whether H is a median graph could 
by this construction also be used to test whether G is triangle-free.  This transformation preserves the 
computational complexity of the problem, for the size of H is proportional to that of G. 

The reduction in the other direction, from triangle detection to median graph testing, is more involved 
and depends on the previous median graph recognition algorithm of Hagauer, Imrich & Klavžar (1999), 
which tests several necessary conditions for median graphs in near-linear time.  The key new step 
involves using a breadth first search to partition the graph into levels according to their distances from 
some arbitrarily chosen root vertex, forming a graph in each level in which two vertices are adjacent if 
they share a common neighbor in the previous level, and searching for triangles in these graphs.  The 
median of any such triangle must be a common neighbor of the three triangle vertices; if this common 
neighbor does not exist, the graph is not a median graph.  If all triangles found in this way have medians, 
and the previous algorithm finds that the graph satisfies all the other conditions for being a median 
graph, then it must actually be a median graph.  Note that this algorithm requires, not just the ability to 
test whether a triangle exists, but a list of all triangles in the level graph.  In arbitrary graphs, listing all 
triangles sometimes requires Ω(m

3/2
) time, as some graphs have that many triangles, however Hagauer et 

al. show that the number of triangles arising in the level graphs of their reduction is near-linear, allowing 
the Alon et al. fast matrix multiplication based technique for finding triangles to be used. 

Key Words: Median Graph, Simplex Graph, Algorithm, Matrix Multiplication. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

A recently published opinion piece in The Times, 
called "Is Algebra Necessary?," generated much 
hubbub in education circles. Its premise -- that we 
should at least consider jettisoning algebra course 
requirements because many students who fail algebra 
eventually drop out of college -- was met with cries of 
derision. Yet`nary has a word been said about the 
continuing erosion of English instruction in our 
schools. 

Bit by bit, the body of English language instruction 
has been dismembered over the last 15 years or so. 

First to be lopped off was spelling. Other than in 
elementary schools, spelling tests are all but 
forgotten, apparently on the premise that word 
processors will do the trick. 

Then vocabulary was subjected to the ax. Gone are 
the vocabulary lists of old, to be replaced with 
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vocabulary in context, which is, not coincidentally, the 
way vocabulary is assessed on standardized tests. 

Next to be hacked off was grammar, which must also 
be taught in context rather than systematically. 
Students don't know they’re there from their they're (I'll 
wager that no more than 1 in 10 students today can 
parse that sentence). 

Finally, creative writing has been chopped clean away, 
to be replaced with unending persuasive essays that 
are the darlings of the Common Core standards. 

Even reading has not been left unscathed. Many 
schools teach reading as a set of skills to be mastered 
rather than as a journey to be embarked upon. 
Children are taught how to predict, to connect, to draw 
inferences, and so forth, but they are rarely allowed 
the leisure to savor what they read or to reflect on the 
art of good writing. 

I personally felt the effects of the Common Core 
keenly last year. As part of our sixth grade curriculum 
in my school, we analyze novels in light of the Joseph 
Campbell's hero's journey in "The Hero with a 
Thousand Faces." 

REVIEW OF LITERATURE: 

In mathematics, a binary operation on a set is a 
calculation that combines two elements of the set 
(called operands) to produce another element of the 
set (more formally, an operation whose arty is two, and 
whose two domains and one co domain are (subsets 
of) the same set).  Examples include the familiar 
elementary arithmetic operations of addition, 
subtraction, multiplication and division.  Other 
examples are readily found in different areas of 
mathematics, such as vector addition, matrix 
multiplication and conjugation in groups. 

More precisely, a binary operation on a set S is a map 
which sends elements of the Cartesian product S × S 
to S: 

 

Because the result of performing the operation on a 
pair of elements of S is again an element of S, the 
operation is called a closed binary operation on S (or 
sometimes expressed as having the property of 
closure).  If f is not a function, but is instead a partial 
function, it is called a partial binary operation.  For 
instance, division of real numbers is a partial binary 
operation, because one can't divide by zero: a/0 is not 
defined for any real a.  Note however that both in 
algebra and model theory the binary operations 
considered are defined on all of S × S. 

Sometimes, especially in computer science, the term is 
used for any binary function. 

Binary operations are the keystone of algebraic 
structures studied in abstract algebra: they are 
essential in the definitions of groups, monoids, semi 
groups, rings, and more.  Most generally, a magma is 
a set together with some binary operation defined on 
it. 

Typical examples of binary operations are the addition 
(+) and multiplication (×) of numbers and matrices as 
well as composition of functions on a single set. For 
instance, 

 On the set of real numbers R, f(a,b) = a + b is 
a binary operation since the sum of two real numbers 
is a real number. 

 On the set of natural numbers N, f(a,b) = a + b 
is a binary operation since the sum of two natural 
numbers is a natural number.  This is a different 
binary operation than the previous one since the sets 
are different. 

 On the set M(2,2) of 2 × 2 matrices with real 
entries, f(A, B) = A + B is a binary operation since the 
sum of two such matrices is another 2 × 2 matrix. 

 On the set M(2,2) of 2 × 2 matrices with real 
entries, f(A, B) = AB is a binary operation since the 
product of two such matrices is another 2 × 2 matrix. 

 For a given set C, let S be the set of all 
functions h: C → C.  On S, f(g,h) = g h = g(h(c)), the 
composition of the two functions g and h, is a binary 
operation since the composition of the two functions 
is another function on the set C (that is, a member of 
S). 

Many binary operations of interest in both algebra and 
formal logic are commutative, satisfying f(a,b) = f(b,a) 
for all elements a and b in S, or associative, satisfying 
f(f(a,b), c) = f(a, f(b,c)) for all a, b and c in S.  Many 
also have identity elements and inverse elements. 

The first three examples above are commutative and 
all of the above examples are associative.  The 
paper-scissors-rock binary operation is commutative 
but not associative. 

On the set of real numbers R, subtraction, that is, 
f(a,b) = a - b, is a binary operation which is not 
commutative since, in general, a - b ≠ b - a.  It is also 
not associative, since, in general, a - (b - c) ≠ (a - b) - 
c; for instance, 1 - (2 - 3) = 2 but (1 - 2) - 3 = -4. 

On the set of natural numbers N, the binary operation 
exponentiation, f(a,b) = a

b
, is not commutative since, 

in general, a
b
 ≠ b

a
 and is also not associative since 

f(f(a,b),c) ≠ f(a, f(b,c)).  For instance, with a = 2, b = 3 
and c = 2, f(2

3
,2) = f(8,2) = 64, but f(2,3

2
) = f(2,9) = 

512.  By changing the set N to the set of integers Z, 
this binary operation becomes a partial binary 
operation since it is now undefined when a = 0 and b 
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is any negative integer.  For either set, this operation 
has a right identity (which is 1) since f(a, 1) = a for all a 
in the set, which is not an identity (two sided identity) 
since f(1, b) ≠ b in general. 

Division (/), a partial binary operation on the set of real 
or rational numbers, is not commutative or associative 
as well.  Tetration(↑↑), as a binary operation on the 
natural numbers, is not commutative nor associative 
and has no identity element. 

Binary operations are often written using infix notation 
such as a*b, a + b, a·b or (by juxtaposition with no 
symbol) ab rather than by functional notation of the 
form f(a, b).  Powers are usually also written without 
operator, but with the second argument as superscript. 

Binary operations sometimes use prefix or (probably 
more often) postfix notation, both of which dispense 
with parentheses.  They are also called, respectively, 
Polish notation and reverse Polish notation. 

A binary operation, ab, depends on the ordered pair 
(a, b) and so (ab)c (where the parentheses here mean 
first operate on the ordered pair (a, b) and then 
operate on the result of that using the ordered pair 
((ab), c)) depends in general on the ordered pair ((a, 
b), c).  Thus, for the general, non-associative case, 
binary operations can be represented with binary 
trees. 

However: 

 If the operation is associative, (ab)c = a(bc), 
then the value of (ab)c depends only on the tuple (a, b, 
c). 

 If the operation is commutative, ab = ba, then 
the value of (ab)c depends only on { {a, b}, c}, where 
braces indicate multisets. 

 If the operation is both associative and 
commutative then the value of (ab)c depends only on 
the multiset {a, b, c}. 

 If the operation is associative, commutative 
and idempotent, aa = a, then the value of (ab)c 
depends only on the set {a, b, c}. 

 In mathematics, a ternary operation is an n-
ary operation with n = 3. A ternary operation on a set A 
takes any given three elements of A and combines 
them to form a single element of A. An example of a 
ternary operation is the product in a heap. 

 In computer science, a ternary operator 
(sometimes incorrectly called a tertiary operator) is an 
operator that takes three arguments. The arguments 
and result can be of different types. Many 

programming languages that use C-like syntax feature 
a ternary operator, ?:, which defines a conditional 
expression. Since this operator is often the only 
existing ternary operator in the language, it is 
sometimes simply referred to as "the ternary operator". 
In some languages, this operator is referred to as "the 
conditional operator". 

In mathematics, a median algebra is a set with a 

ternary operation satisfying a set of axioms 
which generalise the notion of median or majority 
function, as a Boolean function. 

The axioms are 

1.  

2.  

3.  

4.  

The second and third axioms imply commutatively: it 
is possible (but not easy) to show that in the 
presence of the other three, axiom (3) is redundant. 
The fourth axiom implies associativity. There are 
other possible axiom systems: for example the two 

  

  

also suffice. 

In a Boolean algebra, or more generally a distributive 
lattice, the median function 

s
atisfies these axioms, so that every Boolean algebra 
and every distributive lattice forms a median algebra. 

Birkhoff and Kiss showed that a median algebra with 
elements 0 and 1 satisfying < 0,x,1 > = x is a 
distributive lattice. 

MATERIAL AND METHOD: 

Relation to median graphs 

A median graph is an undirected graph in which for 
every three vertices x, y, and z there is a unique 
vertex < x,y,z > that belongs to shortest paths 
between any two of x, y, and z. If this is the case, 
then the operation < x,y,z > defines a median algebra 
having the vertices of the graph as its elements. 
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Conversely, in any median algebra, one may define an 
interval [x, z] to be the set of elements y such that < 
x,y,z > = y. One may define a graph from a median 
algebra by creating a vertex for each algebra element 
and an edge for each pair (x, z) such that the interval 
[x, z] contains no other elements. If the algebra has 
the property that every interval is finite, then this graph 
is a median graph, and it accurately represents the 
algebra in that the median operation defined by 
shortest paths on the graph coincides with the 
algebra's original median operation. 

 

In mathematics, and more specifically graph theory, a 
median graph is an undirected graph in which every 
three vertices a, b, and c have a unique median: a 
vertex m(a,b,c) that belongs to shortest paths between 
each pair of a, b, and c. 

 

The median of three vertices in a tree, showing the 
subtree formed by the union of shortest paths between 
the vertices. 

Every tree is a median graph.  To see this, observe 
that in a tree, the union of the three shortest paths 
between pairs of the three vertices a, b, and c is either 
itself a path, or a subtree formed by three paths 
meeting at a single central node with degree three.  If 
the union of the three paths is itself a path, the median 
m(a,b,c) is equal to one of a, b, or c, whichever of 
these three vertices is between the other two in the 
path.  If the subtree formed by the union of the three 
paths is not a path, the median of the three vertices is 
the central degree-three node of the subtree. 

Additional examples of median graphs are provided by 
the grid graphs.  In a grid graph, the coordinates of the 
median m(a,b,c) can be found as the median of the 
coordinates of a, b, and c.  Conversely, it turns out 
that, in every median graph, one may label the vertices 
by points in an integer lattice in such a way that 
medians can be calculated coordinatewise in this way. 

Squaregraphs, planar graphs in which all interior faces 
are quadrilaterals and all interior vertices have four or 
more incident edges, are another subclass of the 
median graphs. A polyomino is a special case of a 
squaregraph and therefore also forms a median graph. 

The simplex graph κ(G) of an arbitrary undirected 
graph G has a node for every clique (complete 
subgraph) of G; two nodes are linked by an edge if the 
corresponding cliques differ by one vertex.  The 
median of a given triple of cliques may be formed by 
using the majority rule to determine which vertices of 
the cliques to include; the simplex graph is a median 
graph in which this rule determines the median of 
each triple of vertices. 

No cycle graph of length other than four can be a 
median graph, because every such cycle has three 
vertices a, b, and c such that the three shortest paths 
wrap all the way around the cycle without having a 
common intersection.  For such a triple of vertices, 
there can be no median. 

The problems of testing whether a graph is a median 
graph, and whether a graph is triangle-free, both had 
been well studied when Imrich, Klavžar & Mulder 
(1999) observed that, in some sense, they are 
computationally equivalent.  Therefore, the best 
known time bound for testing whether a graph is 
triangle-free, O(m

1.41
),

 
 applies as well to testing 

whether a graph is a median graph, and any 
improvement in median graph testing algorithms 
would also lead to an improvement in algorithms for 
detecting triangles in graphs. 

In one direction, suppose one is given as input a 
graph G, and must test whether G is triangle-free.  
From G, construct a new graph H having as vertices 
each set of zero, one, or two adjacent vertices of G.  
Two such sets are adjacent in H when they differ by 
exactly one vertex.  An equivalent description of H is 
that it is formed by splitting each edge of G into a path 
of two edges, and adding a new vertex connected to 
all the original vertices of G.  This graph H is by 
construction a partial cube, but it is a median graph 
only when G is triangle-free: if a, b, and c form a 
triangle in G, then {a,b}, {a,c}, and {b,c} have no 
median in H, for such a median would have to 
correspond to the set {a,b,c}, but sets of three or 
more vertices of G do not form vertices in H.  
Therefore, G is triangle-free if and only if H is a 
median graph.  In the case that G is triangle-free, H is 
its simplex graph.  An algorithm to test efficiently 
whether H is a median graph could by this 
construction also be used to test whether G is 
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triangle-free.  This transformation preserves the 
computational complexity of the problem, for the size 
of H is proportional to that of G. 

The reduction in the other direction, from triangle 
detection to median graph testing, is more involved 
and depends on the previous median graph 
recognition algorithm of Hagauer, Imrich & Klavžar 
(1999), which tests several necessary conditions for 
median graphs in near-linear time.  The key new step 
involves using a breadth first search to partition the 
graph into levels according to their distances from 
some arbitrarily chosen root vertex, forming a graph in 
each level in which two vertices are adjacent if they 
share a common neighbor in the previous level, and 
searching for triangles in these graphs.  The median of 
any such triangle must be a common neighbor of the 
three triangle vertices; if this common neighbor does 
not exist, the graph is not a median graph.  If all 
triangles found in this way have medians, and the 
previous algorithm finds that the graph satisfies all the 
other conditions for being a median graph, then it must 
actually be a median graph.  Note that this algorithm 
requires, not just the ability to test whether a triangle 
exists, but a list of all triangles in the level graph.  In 
arbitrary graphs, listing all triangles sometimes 
requires Ω(m

3/2
) time, as some graphs have that many 

triangles, however Hagauer et al. show that the 
number of triangles arising in the level graphs of their 
reduction is near-linear, allowing the Alon et al. fast 
matrix multiplication based technique for finding 
triangles to be used. 

CONCLUSION: 

A median graph is an undirected graph in which for 
every three vertices x, y, and z there is a unique vertex 
< x,y,z > that belongs to shortest paths between any 
two of x, y, and z. If this is the case, then the operation 
< x,y,z > defines a median algebra having the vertices 
of the graph as its elements. 

Conversely, in any median algebra, one may define an 
interval [x, z] to be the set of elements y such that < 
x,y,z > = y. One may define a graph from a median 
algebra by creating a vertex for each algebra element 
and an edge for each pair (x, z) such that the interval 
[x, z] contains no other elements. If the algebra has 
the property that every interval is finite, then this graph 
is a median graph, and it accurately represents the 
algebra in that the median operation defined by 
shortest paths on the graph coincides with the 
algebra's original median operation. 

In an arbitrary graph, for each two vertices a and b, the 
minimal number of edges between them is called their 
distance, denoted by d(x,y). The interval of vertices 
that lie on shortest paths between a and b is defined 
as 

I(a,b) = {v | d(a,b) = d(a,v) + d(v,b)}. 

A median graph is defined by the property that, for 
every three vertices a, b, and c, these intervals 
intersect in a single point: 

For all a, b, and c, |I(a,b) ∩ I(a,c) ∩ I(b,c)| = 1. 

Equivalently, for every three vertices a, b, and c one 
can find a vertex m(a,b,c) such that the unweighted 
distances in the graph satisfy the equalities 

 d(a,b) = d(a,m(a,b,c)) + d(m(a,b,c),b) 

 d(a,c) = d(a,m(a,b,c)) + d(m(a,b,c),c) 

 d(b,c) = d(b,m(a,b,c)) + d(m(a,b,c),c) 

and m(a,b,c) is the only vertex for which this is true. 

It is also possible to define median graphs as the 
solution sets of 2-satisfiability problems, as the 
retracts of hypercubes, as the graphs of finite median 
algebras, as the Buneman graphs of Helly split 
systems, and as the graphs of windex 2; see the 
sections below. 
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