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Abstract – Mathematical Optimization is the selection of a best element with regard to some criteria from 
some set of available alternatives. In the simplest case, an optimization problem consists of maximizing or 
minimizing a real function by systematically choosing input values from within an allowed set and 
computing the value of the function. The generalization of optimization theory and techniques to other 
formulations comprises a large area of applied mathematics. More generally, optimization includes 
finding "best available" values of some objective function given a defined domain or a set of constraints, 
including a variety of different types of objective functions and different types of domains. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

For every basis B contained in G  H we need to 
determine whether there is a better basis B’ contained 
in G and if so, deliver such a basis B’ . 

This enables us to find the optimal basis contained in 
G by successively improving a candidate basis, 
provided some initial basis is known. Of course, LP-
type systems present a more specific realization of this 
paradigm. First of all, the quality of bases is measured 
by some function z. In itself, this gives no more than 
an arbitrary ordering among the bases, but in addition 
we have required z to extend to all subsets of the 
ground set H. In particular, unlike the general 
paradigm above, this requires every basis B to be an 
optimal basis contained in B. 

Even more important, we know that if B is not the 
optimal basis in G, then it is already not the optimal 
basis in B U {j} for some j E  G - B. It becomes 
apparent that the improved basis B’’  needs to be a 
subset of G, but not necessarily a subset of B’ U {j} 
where B’ is the previous basis and j an improving 
variable. Hence, the main defining property of LP-type 
systems is not enforced by the general paradigm of 
sub-problem solvability by successive improvement. It 
rather introduces additional structure that facilitates the 
process of testing for improvement and finding an 
improved basis. We shall assume no additional 
structure and instead require the existence of an 
oracle that exactly realizes the general paradigm. 
Obviously, such an oracle introduces additional 
structure itself, and for any concrete problem it needs 
an explicit realization. At this point, one probably 
arrives at the conclusion that the structure of LP-type 
systems leads to the most natural realization, and this 
is actually the case for any concrete problem in this 
thesis. We therefore do not claim that the new level of 
abstraction we are going to climb immediately leads to 
practical applications. Rather, the goal is ² to 
investigate how far we can get by requiring just a 
minimal set of axioms 

OBJECTIVES OF THE STUDY: 

(i) It should be general enough to cover two 
concrete problems that we are particularly interested 
in, namely the polytope distance problem and the 
minimum spanning ball problem. 

(ii)  It should be specific enough to allow a 
detailed treatment without drowning in technicalities. 
The class we get covers problems of minimizing a 
convex function subject to linear equality and non-
negativity constraints. 

RESEARCH METHODOLOGY: 

We start off by introducing the polytope distance 
problem and derive from this the class of convex 
programs we are going to consider. We present a 
solution method for the generic problem in this class, 
along with time bounds, where we keep track of what 
concretely happens for the polytope distance 
problem. Having done this, we apply the developed 
machinery to obtain a solution for the minimum 
spanning ball problem.  

Given two (disjoint and finite) sets P;Q of points in 

IR
d
, the objective is to find a pair of points (p; q), p in 

the convex hull of P, q in the convex hull of Q, such 
that the length of the difference vector        v = p - q is 
minimized. Formally, if 
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we let P (resp. Q) denote the (d x r)-matrix (resp. (d x 
s)-matrix) containing as columns the points of P 
(resp. Q). PD is the following problem in the variables 
x = x1; : : : ; xr, y = y1; : : : ; ys.  

http://en.wikipedia.org/wiki/Optimization_problem
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Maxima_and_minima
http://en.wikipedia.org/wiki/Function_of_a_real_variable
http://en.wikipedia.org/wiki/Argument_of_a_function
http://en.wikipedia.org/wiki/Value_(mathematics)
http://en.wikipedia.org/wiki/Applied_mathematics
http://en.wikipedia.org/wiki/Domain_of_a_function
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This is a quadratic programming problem; this means 
quadratic objective function and linear constraints 
whose optimum value is the square of the euclidean 
distance between conv(P) and conv(Q). 

Pattern behind PD is the following: minimize a real-

valued convex function 
 , df IR 

 with its 
argument p ranging over the nonnegative span of 
some (d x n) - matrix M , where the coefficients satisfy 
additional q equality constraints Ax = b. In case of PD, 
we have p = v, f(v) = v

T
 v, M = (P| - Q) (thus n = r + s) 

and q = 2 with  

1 1 0 0

0 0 1 1
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In general, our convex programming problems look as 
follows. 

(CP) minimize  f() 

 subject to   = Mx,  

   Ax = b,  

   x  0,     

where p is a d-vector, M a (d x n) - matrix, A a (q x n) - 
matrix, b a q-vector and x an n-vector. As in LP, 
inequality constraints Ax < b can be handled by 
introducing slack variables. We restrict ourselves to 
equality constraints here. No condition is imposed on 
M. For PD, this in particular means that we do not 
require the point sets P and Q to be in any kind of 
general position.  

We demand f to be a differentiable function with 
continuous partial derivatives, which is convex, i.e. for 
p; p’ and 0 < t < 1, 

        1 ' 1 'f t t t f tf       
 

holds.  

CONCLUSION: 

Conditions on sub-problems of CP are assumed to 
hold, and they concern non-degeneracy and 

uniqueness of solution. For any G  H := [n], consider 
the problems CP(G) and UCP(G), defined as follows. 

(CP (G)) minimize  f () 

  subject to   = MGxG, 

    AGxG = b,  
     

    xG  0.  

(UCP(G)) minimize f () 

  subject to  = MGxG,  

    AGxG = b. 
     

The sub-problem CP(G) minimizes f(p) over all 
feasible x which satisfy the additional restrictions xH-G 
= 0. In case of PD, this corresponds to a distance 
computation between sub-polytopes of P and Q 
specified by G. 

Where CP(G) asks for the minimum of f over all 
nonnegative linear combinations with coefficients in 
some subspace, the relaxation UPD(G) considers any 
linear combination, and this problem is obtained by 
simply dropping the non-negativity constraints from 
CP(G). The `U' stands for `unconstrained', although 
UCP is not an unconstrained problem in the strict 
sense. The equality constraints of CP are still present, 
but later we will see that they are no `real' constraints 
and that UCP is substantially easier to solve than CP. 
In case of PD, U C P(G) amounts to a distance 
computation between the  hulls of sub-polytopes. 
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