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Abstract – Lagrange's Theorem, one of the most important results in finite group theory, states that the 
order of a subgroup must divide the order of the group. This theorem provides a powerful tool for 
analyzing finite groups; it gives us an idea of exactly what type of subgroups we might expect a finite 
group to possess. Central to understanding Lagrange’s Theorem is the notion of a coset. 
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INTRODUCTION  

A coset is what we get when we take a subgroup and 
shift it (either on the left or on the right). The best way 
to think about cosets is that they are shifted 
subgroups, or translated subgroups. 

Note g lies in both gH and Hg, since g = ge = eg. 
Typically gH 6= Hg. When G is abelian, though, left 
and right cosets of a subgroup by a common element 
are the same thing. When an abelian group operation 
is written additively, an H-coset should be written as g 
+ H, which is the same as H + g. 

Example 1.2. In the additive group Z, with subgroup 
mZ, the mZ-coset of a is a + mZ. 

This is just a congruence class modulo m. 

Example 1.3. In the group R_, with subgroup H = f_1g, 
the H-coset of x is xH = fx;�xg. This is \x up to sign." 

Example 1.4. When G = S3, and H = f(1); (12)g, the 
table below lists the left H-cosets and right H-cosets of 
every element of the group. Compute a few of them for 
non-identity elements to satisfy yourself that you 
understand how they are found. 

 

Notice first of all that cosets are usually not 
subgroups (some do not even contain the identity). 
Also, since (13)H 6= H(13), a particular element can 
have di_erent left and right H-cosets. Since (13)H = 
(123)H, di_erent elements can have the same left H-
coset. (You have already seen this happen with 
congruences: 14 + 3Z = 2 + 3Z, since 14 _ 2 mod 3.) 

Properties of cosets 

We will generally focus our attention on left cosets of 
a subgroup. Proofs of the corresponding properties of 
right cosets will be completely analogous, and can be 
worked out by the interested reader. 

Since g = ge lies in gH, every element of G lies in 
some left H-coset, namely the left coset de_ned by 
the element itself. (Take a look at Example 1.4, 
where (13) lies in (13)H.) Similarly, g 2 Hg since g = 
eg. 

A subgroup is always a left and a right coset of itself: 
H = eH = He. (This is saying nothing other than the 
obvious fact that if we multiply all elements of a 
subgroup by the identity, on either the left or the right, 
we get nothing new.) What is more important to 
recognize is that we can have gH = H (or Hg = H) 
even when g is not the identity. For instance, in the 
additive group Z, 10 + 5Z = 5Z. All this is saying is 
that if we shift the multiples of 5 by 10, we get back 
the multiples of 5. Isn't that obvious? In fact, the only 
way we can have a + 5Z = 5Z is if a is a multiple of 5, 
i.e., if a 2 5Z. 

For a subgroup H of a group G, and g 2 G, when 
does gH equals H? 

Theorem 4.1. For g 2 G, gH = H if and only if g 2 H. 
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Proof. Since g = ge 2 gH, having gH = H certainly 
requires g 2 H. 

Now we need to show that if g 2 H, then gH  H. We 
prove gH = H by showing each is a subset of the other. 
Since g 2 H, gh 2 H for any h 2 H, so gH € H. To see H 
€ gH, note h = g(g€ 1h) and that g €1h is in H (since 
g€1 2 H). 

Joseph-Louis Lagrange (1736{1813), born in Turin, 
Italy, was of French and Italian descent. His talent for 
mathematics became apparent at an early age. 
Leonhard Euler recognized Lagrange's abilities when 
Lagrange, who was only 19, communicated to Euler 
some work that he had done in the calculus of 
variations. That year he was also named a professor 
at the Royal Artillery School in Turin. At the age of 23 
he joined the Berlin Academy. Frederick the Great had 
written to Lagrange proclaiming that the \greatest king 
in Europe" should have the \greatest mathematician in 
Europe" at his court. For 20 years Lagrange held the 
position vacated by his mentor, Euler. His works 
include contributions to number theory, group theory, 
physics and mechanics, the calculus of variations, the 
theory of equations, and deferential equations. Along 
with Laplace and Lavoisier, Lagrange was one of the 
people responsible for designing the metric system. 
During his life Lagrange profoundly incensed the 
development of mathematics, leaving much to the next 
generation of mathematicians in the form of examples 
and new problems to be solved. 

REVIEW OF LITERATURE: 

In ancient Greece, three classic problems were posed. 
These problems are geometric in nature and involve 
straightedge-and-compass constructions from what is 
now high school geometry; that is, we are allowed to 
use only a straightedge and compass to solve them. 
The problems can be stated as follows. 

1. Given an arbitrary angle, can one trisect the angle 
into three equal sub-angles using only a straightedge 
and compass? 

2. Given an arbitrary circle, can one construct a square 
with the same area using only a straightedge and 
compass? 

3. Given a cube, can one construct the edge of 
another cube having twice the volume of the original? 
Again, we are only allowed to use a straightedge and 
compass to do the construction. 

After puzzling mathematicians for over two thousand 
years, each of these constructions was finally shown 
to be impossible. We will use the theory of fields to 
provide a proof that the solutions do not exist. It is 
quite remarkable that the long-sought solution to each 
of these three geometric problems came from abstract 
algebra. 

First, let us determine more specifically what we mean 
by a straightedge and compass, and also examine the 
nature of these problems in a bit more 

The index and Lagrange's theorem 

For any integer m 6= 0, the number of cosets of mZ in 
Z is ImI. This gives us an 

interesting way to think about the meaning of ImI, 
other than its definition as \m made 

positive." Passing from Z to other groups, counting the 
number of cosets of a subgroup 

gives a useful numerical invariant. 

De_nition 5.1. Let H be a subgroup of a group G. The 
index of H in G is the number of 

left cosets of H in G. This number, which is a positive 
integer or 1, is denoted [G : H]. 

Concretely, the index of a subgroup tells us how 
many times we have to translate the 

subgroup around (on the left) to cover the whole 
group. 

Example 5.2. Since H = {(1); (12)} has three left 
cosets in S3, by Example 4.4, [S3 : H] = 

3. 

Example 5.3. The subgroup H = {1; s} of D4 has four 
left cosets: 

H; rH = {r; rs}; r2H = {r2; r2s}; r3H = {r3; r3s}: 

The index of H in D4 is 4. 

Example 5.4. For a positive integer m, [Z : mZ] = m, 
since 0; 1; : : : ;m 1 are a complete set of coset 
representatives of mZ in Z. 

Example 5.5. What is the index of 15Z inside 3Z? 
(Not inside Z, but 3Z.) Modulo 15, a multiple of 3 is 
congruent to 0; 3; 6; 9, or 12. That is, we have the 
disjoint union 3Z = 15Z [ (3 + 15Z) [ (6 + 15Z) [ (9 + 
15Z) [ (12 + 15Z): Thus [3Z : 15Z] = 5. 

MATERIAL AND METHOD: 

Lagrange's Theorem, one of the most important 
results in finite group theory, states that the order of a 
subgroup must divide the order of the group. This 
theorem provides a powerful tool for analyzing finite 
groups; it gives us an idea of exactly what type of 
subgroups we might expect a finite group to possess. 
Central to understanding Lagrange’s Theorem is the 
notion of a coset. 
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Cosets 

Let G be a group and H a subgroup of G. De_ne a left 
coset of H with representative g 2 G to be the set 

gH = fgh : h 2 Hg: 

Right cosets can be defined similarly by 

Hg = fhg : h 2 Hg: 

If left and right cosets coincide or if it is clear from the 
context to which type of coset that we are referring, we 
will use the word coset without specifying left or right. 

Example 1. Let H be the subgroup of Z6 consisting of 
the elements 0 and 

3. The cosets are 

0 + H = 3 + H = {0; 3} 

1 + H = 4 + H = {1; 4} 

2 + H = 5 + H = {2; 5g} 

We will always write the cosets of subgroups of Z and 
Zn with the additive notation we have used for cosets 
here. In a commutative group, left and right cosets are 
always identical. 

Example 2. Let H be the subgroup of S3 defined by 
the permutations 

f(1); (123); (132)g. The left cosets of H are 

(1)H = (123)H = (132)H = {(1); (123); (132)} 

(12)H = (13)H = (23)H = {(12); (13); (23)} 

The right cosets of H are exactly the same as the left 
cosets: 

H(1) = H(123) = H(132) = {(1); (123); (132)} 

H(12) = H(13) = H(23) = {(12); (13); (23)} 

It is not always the case that a left coset is the same 
as a right coset. Let 

K be the subgroup of S3 defined by the permutations 
f(1); (12)g. Then the 

left cosets of K are 

(1)K = (12)K = {(1); (12)} 

(13)K = (123)K = {(13); (123)} 

(23)K = (132)K = {(23); (132)} 

however, the right cosets of K are 

K(1) = K(12) = {(1); (12)} 

K(13) = K(132) = {(13); (132)} 

K(23) = K(123) = {(23); (123)} 

The following lemma is quite useful when dealing with 
cosets. (We leave its proof as an exercise.) 

Lemma 6.1 Let H be a subgroup of a group G and 
suppose that g1; g2 2 G. 

The following conditions are equivalent. 

1. g1H = g2H; 

2. Hg-1 

1 = Hg-1 2 ; 

3. g1H € g2H; 

4. g2 € g1H; 

5. g € 1 

1 g2 € H. 

CONCLUSION: 

In all of our examples the cosets of a subgroup H 
partition the larger group G. 
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