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Abstract — Lagrange's Theorem, one of the most important results in finite group theory, states that the
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analyzing finite groups; it gives us an idea of exactly what type of subgroups we might expect a finite
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INTRODUCTION

A coset is what we get when we take a subgroup and
shift it (either on the left or on the right). The best way
to think about cosets is that they are shifted
subgroups, or translated subgroups.

Note g lies in both gH and Hg, since g = ge = eg.
Typically gH 6= Hg. When G is abelian, though, left
and right cosets of a subgroup by a common element
are the same thing. When an abelian group operation
is written additively, an H-coset should be written as g
+ H, which is the same as H + g.

Example 1.2. In the additive group Z, with subgroup
mZ, the mZ-coset of a is a + mZ.

This is just a congruence class modulo m.

Example 1.3. In the group R_, with subgroup H =f_1g,
the H-coset of x is xH = fx;[1xg. This is \x up to sign."

Example 1.4. When G = S3, and H = f(1); (12)g, the
table below lists the left H-cosets and right H-cosets of
every element of the group. Compute a few of them for
non-identity elements to satisfy yourself that you
understand how they are found.

Notice first of all that cosets are usually not
subgroups (some do not even contain the identity).
Also, since (13)H 6= H(13), a particular element can
have di_erent left and right H-cosets. Since (13)H =
(123)H, di_erent elements can have the same left H-
coset. (You have already seen this happen with
congruences: 14 + 32 =2 + 3Z, since 14 _ 2 mod 3.)

Properties of cosets

We will generally focus our attention on left cosets of
a subgroup. Proofs of the corresponding properties of
right cosets will be completely analogous, and can be
worked out by the interested reader.

Since g = ge lies in gH, every element of G lies in
some left H-coset, namely the left coset de_ned by
the element itself. (Take a look at Example 1.4,
where (13) lies in (13)H.) Similarly, g 2 Hg since g =
eg.

A subgroup is always a left and a right coset of itself:
H = eH = He. (This is saying nothing other than the
obvious fact that if we multiply all elements of a
subgroup by the identity, on either the left or the right,
we get nothing new.) What is more important to
recognize is that we can have gH = H (or Hg = H)
even when g is not the identity. For instance, in the
additive group Z, 10 + 5Z = 5Z. All this is saying is
that if we shift the multiples of 5 by 10, we get back
the multiples of 5. Isn't that obvious? In fact, the only
way we can have a + 5Z = 5Z is if a is a multiple of 5,
e, ifa25Z.

For a subgroup H of a group G, and g 2 G, when
does gH equals H?

Theorem 4.1. Forg 2 G, gH =H if and only if g 2 H.

g gH Hg

(1) 1), (12); (1), (12);
(12) 1), (12); (1), (12);
(13) 113), (123)} {(13), (132)}
(23) 123), (132)} {(23), (123)}
(123) (13), (123)] | 123), (123);
(132) 123), (132)} {(13), (132)}
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Proof. Since g = ge 2 gH, having gH = H certainly
requires g 2 H.

Now we need to show that if g 2 H, then gH H. We
prove gH = H by showing each is a subset of the other.
Sinceg2H,gh2Hforanyh2H,sogH€H. ToseeH
€ gH, note h = g(g€ 1h) and that g €1h is in H (since
g€1 2 H).

Joseph-Louis Lagrange (1736{1813), born in Turin,
Italy, was of French and Italian descent. His talent for
mathematics became apparent at an early age.
Leonhard Euler recognized Lagrange's abilities when
Lagrange, who was only 19, communicated to Euler
some work that he had done in the calculus of
variations. That year he was also named a professor
at the Royal Artillery School in Turin. At the age of 23
he joined the Berlin Academy. Frederick the Great had
written to Lagrange proclaiming that the \greatest king
in Europe” should have the \greatest mathematician in
Europe" at his court. For 20 years Lagrange held the
position vacated by his mentor, Euler. His works
include contributions to number theory, group theory,
physics and mechanics, the calculus of variations, the
theory of equations, and deferential equations. Along
with Laplace and Lavoisier, Lagrange was one of the
people responsible for designing the metric system.
During his life Lagrange profoundly incensed the
development of mathematics, leaving much to the next
generation of mathematicians in the form of examples
and new problems to be solved.

REVIEW OF LITERATURE:

In ancient Greece, three classic problems were posed.
These problems are geometric in nature and involve
straightedge-and-compass constructions from what is
now high school geometry; that is, we are allowed to
use only a straightedge and compass to solve them.
The problems can be stated as follows.

1. Given an arbitrary angle, can one trisect the angle
into three equal sub-angles using only a straightedge
and compass?

2. Given an arbitrary circle, can one construct a square
with the same area using only a straightedge and
compass?

3. Given a cube, can one construct the edge of
another cube having twice the volume of the original?
Again, we are only allowed to use a straightedge and
compass to do the construction.

After puzzling mathematicians for over two thousand
years, each of these constructions was finally shown
to be impossible. We will use the theory of fields to
provide a proof that the solutions do not exist. It is
quite remarkable that the long-sought solution to each
of these three geometric problems came from abstract
algebra.

First, let us determine more specifically what we mean
by a straightedge and compass, and also examine the
nature of these problems in a bit more

The index and Lagrange's theorem

For any integer m 6= 0, the number of cosets of mZ in
Zis Iml. This gives us an

interesting way to think about the meaning of Iml,
other than its definition as \m made

positive." Passing from Z to other groups, counting the
number of cosets of a subgroup

gives a useful numerical invariant.

De_nition 5.1. Let H be a subgroup of a group G. The
index of H in G is the number of

left cosets of H in G. This number, which is a positive
integer or 1, is denoted [G : H].

Concretely, the index of a subgroup tells us how
many times we have to translate the

subgroup around (on the left) to cover the whole
group.

Example 5.2. Since H = {(1); (12)} has three left
cosets in S3, by Example 4.4, [S3 : H] =

3.

Example 5.3. The subgroup H = {1; s} of D4 has four
left cosets:

H; rH ={r; rs}; r2H = {r2; r2s}; r3H = {r3; r3s}:

The index of H in D4 is 4.

Example 5.4. For a positive integer m, [Z : mZ] = m,
representatives of mZ in Z.

Example 5.5. What is the index of 15Z inside 3Z?
(Not inside Z, but 3Z.) Modulo 15, a multiple of 3 is
congruent to 0; 3; 6; 9, or 12. That is, we have the
disjoint union 32 = 15Z [ (3 + 15Z) [ (6 + 15Z) [ (9 +
157) [ (12 + 15Z): Thus [3Z : 15Z] = 5.

MATERIAL AND METHOD:

Lagrange's Theorem, one of the most important
results in finite group theory, states that the order of a
subgroup must divide the order of the group. This
theorem provides a powerful tool for analyzing finite
groups; it gives us an idea of exactly what type of
subgroups we might expect a finite group to possess.
Central to understanding Lagrange’s Theorem is the
notion of a coset.
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Cosets

Let G be a group and H a subgroup of G. De_ne a left
coset of H with representative g 2 G to be the set

gH =fgh:h2Hg:

Right cosets can be defined similarly by

Hg =fhg : h 2 Hg:

If left and right cosets coincide or if it is clear from the
context to which type of coset that we are referring, we

will use the word coset without specifying left or right.

Example 1. Let H be the subgroup of Z6 consisting of
the elements 0 and

3. The cosets are

0+H=3+H={0; 3}

1+H=4+H={1, 4}

2+H=5+H={2; 59}

We will always write the cosets of subgroups of Z and
Zn with the additive notation we have used for cosets
here. In a commutative group, left and right cosets are

always identical.

Example 2. Let H be the subgroup of S3 defined by
the permutations

f(1); (123); (132)g. The left cosets of H are
(1)H = (123)H = (132)H = {(1); (123); (132)}
(12)H = (13)H = (23)H = {(12); (13); (23)}

The right cosets of H are exactly the same as the left
cosets:

H(1) = H(123) = H(132) = {(1); (123); (132)}
H(12) = H(13) = H(23) = {(12); (13); (23)}

It is not always the case that a left coset is the same
as a right coset. Let

K be the subgroup of S3 defined by the permutations
f(1); (12)g. Then the

left cosets of K are
(DK = (12)K ={(2); (12)}

(13)K = (123)K = {(13); (123)}
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(23)K = (132)K ={(23); (132)}
however, the right cosets of K are
K(1) = K(12) = {(2); (12)}

K(13) = K(132) = {(13); (132)}
K(23) = K(123) = {(23); (123)}

The following lemma is quite useful when dealing with
cosets. (We leave its proof as an exercise.)

Lemma 6.1 Let H be a subgroup of a group G and
suppose that g1; g2 2 G.

The following conditions are equivalent.
1. g1H = g2H;

2. Hg-1

1=Hg-12;

3. g91H € g2H;

4.92 € g1H;

5.g€1

192 €H.

CONCLUSION:

In all of our examples the cosets of a subgroup H
partition the larger group G.
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