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Abstract – Linear optimization can be used for set of different problems, which have restrictions such as a 
given amount of resources or a certain budget. The lower bound is the smallest possible value, and the 
upper bound is the highest possible value. Linear programming is the most commonly used optimization 
technique in embedded industrial applications. There are many reasons for this. Linear programs are 
relatively easy to formulate, use and understand. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

The LP optimization techniques are also relatively 
efficient and well developed. A surprisingly large set of 
real-life problems can be represented as linear 
programs, or approximated sufficiently well with linear 
programs. Finally, a number of more advanced 
modeling and solution techniques are based on linear 
programming, such as quadratic programming, 
fractional programming, integer programming, mixed 
integer programming, constraint logic programming, 
etc. 

Deterministic algorithm for solving AOPs must in the 
worst case examine all bases of the input AOP to find 
the optimal one. This implies that the randomization 
used in the previous chapter to obtain sub-exponential 
bounds was indeed crucial. In other words, while the 
sub-exponential algorithm can only `fool' itself by 
coming up with `bad' coin flips , any deterministic 
algorithm can be fooled by an adversary who will 
supply just the problem the algorithm cannot handle 
efficiently.  

Theorem Let H be a finite set, B  2
H
 a set of bases. 

For any deterministic algorithm A, there exists an 
ordering <= of the bases and an improvement oracle ф 
such that A needs at least |B| - 1 oracle queries to 

solve 
 , ,H B 

. 

Proof. We start A on some problem 
 , ,H B 

 
with < and ф not yet determined, and we argue that an 
adversary answering the oracle queries can construct 
< and ф `online' in such a way that the algorithm is 
forced to step through all the bases. When supplied 
with a query pair (G,B), the adversary will output an 
answer B’ = ф(G,B) according to two simple rules: 

(i)  the answer B’ is consistent with the previous 
ones, i.e. there exists an AOP on H and B such that 

the present and all previous queries have been 
answered correctly with respect to this AOP. 

(ii)  The answer B’ = B (proving that B is optimal 
among all subsets of G) is given only if there is no 
other consistent answer. 

It is clear by induction that the adversary always has 
a consistent answer, so the algorithm A steps through 
a sequence of queries with pairs (G,B) and finally 
stops. Suppose that less than     |B| - 1 queries have 
been performed. Then there are two bases B1 and B2 
which have never been the second component of a 
query pair. We will show that it is consistent with all 
answers to assume that B1 = B(H), i.e. B1 is an 
optimal basis. 

The same holds for B2, so whatever the algorithm 
outputs, there is an AOP that is not correctly solved, 
a contradiction to A being an algorithm for solving any 
AOP. We are left to prove that B1 = B(H) is a 
consistent choice. Clearly, this can fail only if some 
answer has revealed the existence of a larger basis 
with respect to 1. Since there was no query pair 
(G,B1), the only remaining possibility for this to 

happen is that some query (G,B) with B1  G has 

been answered by B, thus establishing B1  B. But in 
the first query of this type, B1 was still `free' and could 
have been returned instead of B, a contradiction to 
rule (ii). 

REVIEW OF LITERATURE 

The bases of LP-type systems as well as the z-values 

can be identified with GF(2), the vector space of all 
0=1-vectors of length  over the two-element field 
GF(2). This ,on the one hand , allows to reinterpret 

algorithms as flipping games over GF(2) and on the 
other hand makes linear algebra over GF(2) available 
as a very useful tool for the analysis of these games. 
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Let  

 H  := 
 1,.....,h h  

 H  := 
 1,....,h h

 

be two disjoint element sets. For any l, hl and h’l are 
called conjugate elements. We consider LP-type 
systems  

 , ,A AL H H B z 
   

 

 : | | { , | 1, }l lB B H H B h h for all l  

i.e. the bases are all the sets containing exactly one of 
any two conjugate elements. Every basis has  
elements and can be identified with a 0/1 vector B

~
 

whose l-th component is defined by  

 

: 0,

1,

l l

l

B if h B

if h B

 


, 

The mapping 
B B

defines a bijection between B 

and 
 2GF



. 

 

 

11

1

0 0

2
0

a

A GF

a a

 

 



 
 
  
 
 
    

with 
1lla 

 for all l (equivalently, A is nonsingular). 
The objective function zA assigns to any basis B the 
vector  

 
   : 2Az B AB GF


 

   

where  2GF


 becomes an ordered set W via 
decreasing lexicographic order, i.e. a vector is larger 
than another if it has a zero-entry in the first 
component where they differ. This agrees with the 
usual decreasing order of the natural numbers when 
0=1-vectors are interpreted as binary numbers in the 
obvious way . The reason for using decreasing instead 
of the natural increasing order is merely technical and 
will become clear soon. Since A is nonsingular, all the 
bases get distinct values and can uniquely be ordered 
according to these values. 

Example  Let  = 3,  

 

1 0 0

1 1 0

1 1 1

A

 
 


 
 
   

The following table lists the 0/1-vectors corresponding 
to the bases, ordered by increasing zA-value. 

 

Thus, the all-zero vector is the optimal basis in all 
problems LA. The following lemma prepares the proof 
that LA indeed defines an LP-type system. Recall that 
zA extends to all subsets G of H 

    : max | , }A Az G z B B B B G  
.  

Lemma for any G  H  H, B  G basis, the following 
are equivalent.  

(i) B = B (G), i.e., 
( ) ( )A Az B z G

. 

(ii) 
  0A l

z B 
 for all l with 

, .l lh h G
 

Proof. Assume (i) holds and consider l with 

, .l lh h G
. Then the basis 

 
' : { , }l lB B h h 

 

is in G as well, with  

     ' ' ,
lA l A e

z B AB A B e z B A    
 

where Ae` coincides with the l-th column of A.  



 

 

Satpal Singh 

 

w
w

w
.i

gn
it

e
d

.i
n

 

3 

 

 Journal of Advances in Science and Technology                     
Vol. VI, Issue No. XII, February-2014, ISSN 2230-9659 
 

Now suppose (ii) is satisfied. Choose any basis 

' , 'B G B B 
and let ` be minimal such that 

'

l lB B
. Then 

, ,l lh h G
so  

 
  0A l

z B 
 

Moreover, because of A's shape, ` is also minimal with  

       ' ' ,
A Al ll l

z B AB AB z B  
 

and this shows 
   ' .A Az B z B

Since B' was any 
basis, B = B  (G) follows.  

Theorem For any lower-diagonal, nonsingular matrix 

 2A GF
 


 

 , ,A AL H H B z
 

Proof. zA extends to 2
H R

 is automatically satisfied if 
no basis contains another which is the case because 
all bases have the same size . Condition (3.2) 
demands that  

 
   { }A Az G j z G

implies 

   { } ,A Az B j z B
 

RESEARCH  METHODOLOGY 

Recall that the primitive operations needed to solve an 
LP-type system by Algorithm are the improvement 
query,  

   { } ?A Az B j z B
 

and the basis computation,  

 
 ' : { }B B B j

 

Actually, a basis improvement primitive suffices but in 
this case we do have a basis computation available. 
The following lemma shows what the operations look 
like when we interpret them as operations on the 0/1-
vector zA(B) = AB

~
 rather than on B itself. This 

reinterpretation subsequently leads to an equivalent 
formulation of algorithm as a flipping game on 
objective function values.  

Lemma:  Consider a basis B, j  

 , , .l lh h j B Then
 

 
   { }A Az B j z B

 if and only if 

  1
l

AB 
 

and  

 
 ' { }B B B j

if and only if 

' ,l

AAB F AB
 

where 

 '

1

: 0,....,0, ,0.....,0 2A el

l

F E A GF
 



 
   

 
   

is called the flip at l. 

Proof. Let us distinguish two cases. If B’ = B, then B’ 
= B(B U {j}) equivalently means zA(B U {j}) = zA(B), 
resp. (AB

~
)` = 0. This in turn holds if and only if  

 
 0,....,0, ,0,.....0 0,lAe AB

equivalent

ly 
' .l

AAB AB F AB 
 

 If B'  B, then B' = B (B  { j }) if and only if 

(AB')l =  , where B' = B  
 ,l lh h

(this is the only 

other basis in 
{ })B j

. But then we equivalently 

get 
  1

l
AB 

 and  

 

   0,....,0, ,0,.....,0 l

l l l AAB A B e AB Ae AB Ae AB F AB      
 

To make this convenient interpretation of basis 
computations as improving linear transformations of 
objective function values work, decreasing 
lexicographic order has been chosen (no linear 
transformation can improve on the value 00 …. 0, 
therefore this has to be the optimum value).  

1 2 3

0 0 0 1 0 0 1 0 0

1 1 0 , 0 0 0 , 0 1 0

1 0 1 0 1 1 0 0 0

A A A
F F F

     
     

 
     
     
        

and the step from basis B to B’ with  

 

2100, 110 ( ) 111AB B e takes z B AB    
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  2

1 1 0 0 1

' ' 0 0 0 0 1

0 0 1 1 1

A A
z B AB F AB

    
    

   
    
    
      

CONCLUSION: 

In general, when the flip at l is applied to a vector 
whose l-th entry has value one, it zeroes this entry and 
flips values at any other position where Ae` equals 
one. Since A was lower-diagonal, all these positions 
are to the right of l, so the vector becomes 
lexicographically smaller. Note that whether a value to 
the right of l gets flipped does not depend on the value 
itself but only on its position in the vector. Moreover, if 
the flip at l is applied to a vector whose l-

th
 entry has 

value zero, this vector remains unchanged. Algorithm 

RF-LPtype works on pairs (G,B) with B  G  H  H, 
B basis. The procedure RF-FlipA equivalently 
represents B by  

V (B) := AB
~  

and G by the set  

 
     : | , }l lS G l G h h G  

 

S(G) contains exactly the subscripts  that appear in G - 
B but does not keep the information whether h` or its 
conjugate hl is in G - B. However, given B (which 
uniquely corresponds to V (B)), this information is 
deductible and G can be recovered Invoking Lemma. 
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