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Abstract — Linear optimization can be used for set of different problems, which have restrictions such as a
given amount of resources or a certain budget. The lower bound is the smallest possible value, and the

upper bound is the highest possible value. Linear programming is the most commonly used optimization
technique in embedded industrial applications. There are many reasons for this. Linear programs are

relatively easy to formulate, use and understand.
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INTRODUCTION

The LP optimization techniques are also relatively
efficient and well developed. A surprisingly large set of
real-life problems can be represented as linear
programs, or approximated sufficiently well with linear
programs. Finally, a number of more advanced
modeling and solution techniques are based on linear
programming, such as quadratic programming,
fractional programming, integer programming, mixed
integer programming, constraint logic programming,
etc.

Deterministic algorithm for solving AOPs must in the
worst case examine all bases of the input AOP to find
the optimal one. This implies that the randomization
used in the previous chapter to obtain sub-exponential
bounds was indeed crucial. In other words, while the
sub-exponential algorithm can only ‘fool' itself by
coming up with "bad' coin flips , any deterministic
algorithm can be fooled by an adversary who will
supply just the problem the algorithm cannot handle
efficiently.

Theorem Let H be a finite set, B ¢ 2" a set of bases.
For any deterministic algorithm A, there exists an
ordering <= of the bases and an improvement oracle ¢
such that A needs at least |[B| - 1 oracle queries to

(H,B,<®)

solve .

(H,B,<®)
Proof. We start A on some problem

with < and ¢ not yet determined, and we argue that an
adversary answering the oracle queries can construct
< and @ ‘online' in such a way that the algorithm is
forced to step through all the bases. When supplied
with a query pair (G,B), the adversary will output an
answer B’ = ¢(G,B) according to two simple rules:

0] the answer B’ is consistent with the previous
ones, i.e. there exists an AOP on H and B such that

the present and all previous queries have been
answered correctly with respect to this AOP.

(i) The answer B’ = B (proving that B is optimal
among all subsets of G) is given only if there is no
other consistent answer.

It is clear by induction that the adversary always has
a consistent answer, so the algorithm A steps through
a sequence of queries with pairs (G,B) and finally
stops. Suppose that less than  |B| - 1 queries have
been performed. Then there are two bases B; and B,
which have never been the second component of a
query pair. We will show that it is consistent with all
answers to assume that B1 = B(H), i.e. B; is an
optimal basis.

The same holds for B,, so whatever the algorithm
outputs, there is an AOP that is not correctly solved,
a contradiction to A being an algorithm for solving any
AOP. We are left to prove that B1 = B(H) is a
consistent choice. Clearly, this can fail only if some
answer has revealed the existence of a larger basis
with respect to 1. Since there was no query pair
(G,B,), the only remaining possibility for this to
happen is that some query (G,B) with B; < G has
been answered by B, thus establishing B; < B. But in
the first query of this type, B; was still “free' and could
have been returned instead of B, a contradiction to
rule (ii).

REVIEW OF LITERATURE

The bases of LP-type systems as well as the z-values
can be identified with GF(2)®, the vector space of all
0=1-vectors of length over the two-element field
GF(2). This ,on the one hand , allows to reinterpret
algorithms as flipping games over GF(2)° and on the
other hand makes linear algebra over GF(2) available
as a very useful tool for the analysis of these games.
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Let

g _{hhy

be two disjoint element sets. For any |, hl and h’l are
called conjugate elements. We consider LP-type
systems

L,=(HUH, B, z,)

B:={B<HUH||BN{h,h}I=1, for all I}

i.e. the bases are all the sets containing exactly one of
any two conjugate elements. Every basis has
elements and can be identified with a 0/1 vector B~
whose I-th component is defined by

B:=0, ifheB
1, ifheB

The mapping B — defines a bijection between B

na OF(2)"
a, O 0

A= | e GF(2)™
ds; Ass

with &1 =L o an (equivalently, A is nonsingular).

The objective function z, assigns to any basis B the
vector

z,(B):= AB e GF (2)’

5

where GF(2) becomes an ordered set W via
decreasing lexicographic order, i.e. a vector is larger
than another if it has a zero-entry in the first
component where they differ. This agrees with the
usual decreasing order of the natural numbers when
0=1-vectors are interpreted as binary numbers in the
obvious way . The reason for using decreasing instead
of the natural increasing order is merely technical and
will become clear soon. Since A is nonsingular, all the
bases get distinct values and can uniquely be ordered
according to these values.

Example Letd =3,

1 0 0
A=|1 1 0
1 1 1

The following table lists the 0/1-vectors corresponding
to the bases, ordered by increasing zA-value.

B Z,;(B): AB binary value
100 111 7
101 110 6
111 101 5
110 100 4
010 011 3
011 010 2
001 001 1
000 000 0

Thus, the all-zero vector is the optimal basis in all
problems LA. The following lemma prepares the proof
that LA indeed defines an LP-type system. Recall that
zZA  extends to all subsets G of H

2,(G): = max {z,(B)}|BB, B <G}

Lemma for any G c H U H, B < G basis, the following
are equivalent.

2,(B)=2,(G) _

0) B=B(G),ie.,
(i) ZA(B)':O for all | with h.heG.
Proo_f. Assume (i) holds and consider | with
h' ! h' € G'. Then the basis

B':=BA{h,h}

is in G as well, with
2,(B)=AB'=A(B+¢ )=2,(B)+A,,

where Ae" coincides with the I-th column of A.
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Now suppose (i) is satisfied. Choose any basis

?ng’BliBand_ let = be minimal such that
B # B rpen N €G,
2,(B),=0

Moreover, because of A's shape, " is also minimal with
2,(B),=(AB) = (AB') =z,(B),
A( )l | | A( )l

> ).
and this shows ZA(B) ZA(B ) Since B' was any
basis, B =B (G) follows.

Theorem For any lower-diagonal, nonsingular matrix

AeGF(2)™

LA:(HU H,B,ZA)

Proof. z, extends to 2HUR is automatically satisfied if
no basis contains another which is the case because
all bases have the same size . Condition (3.2)
demands that

z,(GU{i})>z,(G)
z,(BU{j})>z,(B).

RESEARCH METHODOLOGY

implies

Recall that the primitive operations needed to solve an
LP-type system by Algorithm are the improvement

query,
z,(BU{j})>z,(B)?

and the basis computation,
B":= B(BU{j})

Actually, a basis improvement primitive suffices but in
this case we do have a basis computation available.
The following lemma shows what the operations look
like when we interpret them as operations on the 0/1-
vector zA(B) = AB™ rather than on B itself. This
reinterpretation subsequently leads to an equivalent
formulation of algorithm as a flipping game on
objective function values.

Lemma: Consider a

{h.h}, jeB.Then

basis B, | €

z,(BU{j})>z,(B) ’

and only if

(AB)I=1
and

B'=B(BU{}}) if and only if
AB' = F, AB,
where
. xS
F.:=E+[0,..,0,A,,0....,0 | GF(2)

1-1
is called the flip at I.

Proof. Let us distinguish two cases. If B’ = B, then B’

= B(B U {j}) equivalently means zA(B U {j}) = zA(B),
resp. (AB")" = 0. This in turn holds if and only if

(0.....,0,Ag,0.,....0) AB=0
AB'= AB=F, AB.

" equivalent
ly

If B'= B, thenB'=B (Bu {j}) if and only if
(AB), = U , where B'=B A {h' ! h'} (this is the only

other basis in B U{J}) But then we equivalently
(AB) =1

get I and

AB=A(B+e )=AB+Ag =AB+(0,...0, Ag,0.....,0) AB=F, AB

To make this convenient interpretation of basis
computations as improving linear transformations of

objective  function values work, decreasing
lexicographic order has been chosen (no linear
transformation can improve on the value 00 .... O,

therefore this has to be the optimum value).

0 0 0 1 0 0y (1
Fa=|1 0|,FZ=|0 0 O0|F}0
1 0 1 0o 1 1 0

and the step from basis B to B’ with

-
o o
o O o
—

B =100, B+e,=110 takesz, (B)=AB=111
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1y (1 0o o)1
z,(B")=AB'=|0|=| 0 0|1|=FAB

o)jlo 1 1)1
CONCLUSION:

In general, when the flip at | is applied to a vector
whose I|-th entry has value one, it zeroes this entry and
flips values at any other position where Ae’ equals
one. Since A was lower-diagonal, all these positions
are to the right of I, so the vector becomes
lexicographically smaller. Note that whether a value to
the right of | gets flipped does not depend on the value
itself but only on its position in the vector. Moreover if
the flip at | is applied to a vector whose I-" entry has
value zero, this vector remains unchanged. Algorithm
RF-LPtype works on pairs (G,B) withBc G c H U H,
B basis. The procedure RF-FlipA equivalently
represents B by

V (B) := AB™ and G by the set

$(G):={leG}|{h.h}=G}

S(G) contains exactly the subscripts that appear in G -
B but does not keep the information whether h™ or its
conjugate h, is in G - B. However, given B (which
uniquely corresponds to V (B)), this information is
deductible and G can be recovered Invoking Lemma.
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