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Abstract – At the Edinburgh congress 12 years ago Gârding gave a general survey of the theory of linear 
partial differential operators. I shall take his lecture as my starting point and try to give some idea of the 
later development. Naturally it is necessary to concentrate on a few topics and ignore others which are as 
interesting. I shall not try to list the omissions but wish to specify the limitation to questions concerning 

the existence and structure of solutions of differential equations with constant, Cor analytic coefficients. 

In this paper we will begin to take a more sophisticated approach to differential equations. We will define, 
with some care, the notion of a linear differential operator, and explore the analogy between such 
operators and matrices. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Differential equations seem to be well suited as 
models for systems. Thus an understanding of 
differential equations is at least as important as an 
understanding of matrix equations. In Section 1.5 we 
inverted matrices and solved matrix equations. In this 
paper we explore the analogous inversion and solution 
process for linear differential equations. 

Because of the presence of boundary conditions, the 
process of inverting a differential operator is somewhat 
more complex than the analogous matrix inversion. 
The notation ordinarily used for the study of differential 
equations is designed for easy handling of boundary 
conditions rather than for understanding of differential 
operators. As a consequence, the concept of the 
inverse of a differential operator is not widely 
understood among engineers. The approach we use in 
this paper is one that draws a strong analogy between 
linear differential equations and matrix equations, 
thereby placing both these types of models in the 
same conceptual framework. 

The key concept is the Green’s function. It plays the 
same role for a linear differential equation as does the 
inverse matrix for a matrix equation. There are both 
practical and theoretical reasons for examining the 
process of inverting differential operators. The inverse 
(or integral form) of a differential equation displays 
explicitly the input-output relationship of the system. 
Furthermore, integral operators are computationally 
and theoretically less troublesome than differential 

operators; for example, differentiation emphasizes 
data errors, whereas integration averages them. 

Consequently, the theoretical justification for applying 
many of the computational procedures to differential 
systems is based on the inverse (or integral) 
description of the system. Finally, the application of 
the optimization techniques to differential systems 
often depends upon the prior determination of the 
integral forms of the systems. 

One of the reasons that matrix equations are widely 
used is that we have a practical, automatable 
scheme, Gaussian elimination, for inverting a matrix 
or solving a matrix equation. It is also possible to 
invert certain types of differential equations by 
computer automation. The greatest progress in 
understanding and automation has been made for 
linear, constant-coefficient differential equations with 
initial conditions. 

LINEAR DIFFERENTIAL OPERATORS WITH 
CONSTANT COEFFICIENTS 

The general linear ODE of order n is 

 (1) 

From now on we will consider only the case where (1) 
has constant coefficients. This type of ODE can be 
written as 
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(2) 

using the differentiation operator D, we can write (2) in 
the form 

(3) 

or more simply, where  

(4) 

We call p(D) a polynomial differential operator with 
constant coefficients. We 

think of the formal polynomial p(D) as operating on a 
function y(x), converting- it into another function; it is 
like a black box, in which the function y(x) goes in. and 
p{D)y  comes out. 

 

Our main goal in this section of the Notes is to develop 
methods for finding particular solutions to the ODE (2) 
when q(x) has a special form: an exponential, sine or 
cosine, x

k
, or a product of these. (The function q(x) can 

also be a sum of such special functions.) These are 
the most important functions for the standard 
applications. 

The reason for introducing the polynomial operator 
p(D) is that this allows us to use polynomial algebra to 
help find the particular solutions. The rest of this paper 
of the Notes will illustrate this. Throughout, we let 

(4) 

ai constants. 

DIFFERENTIAL OPERATORS 

In this section, we study differential equations and their 
associated differential operators. Only properties of 
very simple differential equations can be proved by 
working with their solutions, e.g., linear differential 
equations with constant coefficients that form a 
nilpotent matrix. 

Differential Operators. More complicated differential 
equations need a different approach, because their 
solutions may not fall into decidable classes of 
arithmetic, are not computable, or may not even exist 
in closed form. As a proof technique for advanced 
differential equations, we have introduced differential 
invariants. Differential invariants turn the following 
intuition into a formally sound proof procedure. If the 
vector field of the differential equation always points 
into a direction where the differential invariant F, which 
is a logical formula, is becoming "more true

”
, then the 

system will always stay safe if it initially starts safe. 
This principle can be understood in a simple but 
formally sound way in the logic dC. Differential in-
variants have been introduced in, and later refined to a 
procedure that computes differential invariants in a 
fixed-point loop. Instead of our original presentation, 
which was based on differential algebra, total deriva-
tives, and differential substitution, we take a 
differential operator approach here. Both views are 
fruitful and closely related. 

Definition 1 (Lie differential operator). Let be 
the differential equation 

system in vectorial 
notation. The (Lie) differential operator belonging 

to is the operator defined as 

(1) 

The are partial derivative operators, 
but can be considered as a basis of the tangent 

space at x of the manifold on which is defined. 
The result of applying the differential 

operator to a differentiate function is 

  

The differential operator lifts conjunctively to logical 
formulas F: 

 

This conjunction is over all atomic 

subformulas of F for any operator 

. In this definition, we assume that 

formulas use dualities like to avoid 

negations and the operator is handled in a special 
way; se previous work for a discussion. The functions 
and terms in / and F need to be sufficiently smooth for 
the partial derivatives to be defined and enjoy useful 
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properties like commutativity of  land .  This is 
the case for polynomials, which are arbitrarily 

smooth . 

EQUATIONS WITH ANALYTIC COEFFICIENTS 

Hyperfunctions.- In the study of differential operators 
with C00 coefficients it is natural to work with Schwartz 
distributions which form the largest class on which all 
such operators are defined. However, when the 
coefficients are real analytic it is possible to work 
within the larger frame of Sato hyperfunctions. During 
the past few years much work has been done along 
such lines which has given many results parallel to 
those for Schwartz distributions. We must content 
ourselves here with referring to the survey by Schapira 
and the lecture by M. Sato in these proceedings. 

Uniformization - A study of the Cauchy problem with 
data on a hypersurface which is partly characteristic 
was initiated by Leray. He found that the solution 
ramifies around the variety generated by the 
bicharacteristics passing through the characteristic 
points of the initial surface. A detailed analysis was 
given by Gärding, Kotake and Leray in the case of 
linear systems. Later Choquet-Burhat has simplified 
the proofs and extended the general result to non-
linear equations. 

CONCLUSION 

Differential invariants are a natural induction principle 
for differential equations. The structure of general 
differential invariants has been studied previously. 
Here, we took a differential operator view and have 
studied the case of equational differential invariants in 
more detail. We have related equational differential 
invariants to Lie's seminal work and subsequent 
results about Lie groups. We have shown how the 
resulting equivalence characterization of invariant 
equations on open domains can be used, carefully 
illustrate surprising challenges in invariant generation, 
explain why they exist, and show with which 
techniques they can be overcome. We have studied 
the structure of invariant functions and invariant 
equations, their relation, and have shown that, in the 
presence of differential cuts, the invariant equations 
and provable invariant equations form a chain of 
differential ideals and that their varieties are generated 
by a single invariant. 

Finally, we relate differential invariants to partial 
differential equations and explain how the inverse 
characteristic method reduces the problem of 
educational differential invariant generation to that of 
solving partial differential equations. 

REFERENCES 

 Alur, R., Courcoubetis, C., Halbwachs, N., 
Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, 
A., Sifakis, J., Yovine, S.: The algorithmic 
analysis of hybrid systems. Theor. Comput. 
Sci. 138(1), 3{34 (1995) 

 Evans, L.C.: Partial Di_erential Equations, 
Graduate Studies in Mathematics, vol. 19. 
AMS, 2nd edn. (2010) 

 Forsythe, George E. and Wolfgang R. Wasow, 
Finite-Difference Methods for Partial 
Differential Equations, Wiley, New York, 
1960. 

 Grigor'ev, D.Y.: Complexity of quanti_er 
elimination in the theory of ordinary 
di_erential equations. In: Davenport, J.H. 
(ed.) EUROCAL. LNCS, vol. 378, pp. 11{25. 
Springer (1987) 

 K. G. ANDERSSON. — Propagation of 
analyticity of solutions of partial differential 
equations with constant coefficients, Ark. for 
Matematik, 8 (1970). 

 Stakgold, Ivar, Boundary Value Problems of 
Mathematical Physics, Volume I, Macmillan, 
New York, 1968. 


