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Abstract — At the Edinburgh congress 12 years ago Garding gave a general survey of the theory of linear
partial differential operators. | shall take his lecture as my starting point and try to give some idea of the
later development. Naturally it is necessary to concentrate on a few topics and ignore others which are as
interesting. | shall not try to list the omissions but wish to specify the limitation to questions concerning
the existence and structure of solutions of differential equations with constant, Cor analytic coefficients.

In this paper we will begin to take a more sophisticated approach to differential equations. We will define,
with some care, the notion of a linear differential operator, and explore the analogy between such

operators and matrices.

<*

INTRODUCTION

Differential equations seem to be well suited as
models for systems. Thus an understanding of
differential equations is at least as important as an
understanding of matrix equations. In Section 1.5 we
inverted matrices and solved matrix equations. In this
paper we explore the analogous inversion and solution
process for linear differential equations.

Because of the presence of boundary conditions, the
process of inverting a differential operator is somewhat
more complex than the analogous matrix inversion.
The notation ordinarily used for the study of differential
equations is designed for easy handling of boundary
conditions rather than for understanding of differential
operators. As a consequence, the concept of the
inverse of a differential operator is not widely
understood among engineers. The approach we use in
this paper is one that draws a strong analogy between
linear differential equations and matrix equations,
thereby placing both these types of models in the
same conceptual framework.

The key concept is the Green’s function. It plays the
same role for a linear differential equation as does the
inverse matrix for a matrix equation. There are both
practical and theoretical reasons for examining the
process of inverting differential operators. The inverse
(or integral form) of a differential equation displays
explicitly the input-output relationship of the system.
Furthermore, integral operators are computationally
and theoretically less troublesome than differential

operators; for example, differentiation emphasizes
data errors, whereas integration averages them.

Consequently, the theoretical justification for applying
many of the computational procedures to differential
systems is based on the inverse (or integral)
description of the system. Finally, the application of
the optimization techniques to differential systems
often depends upon the prior determination of the
integral forms of the systems.

One of the reasons that matrix equations are widely
used is that we have a practical, automatable
scheme, Gaussian elimination, for inverting a matrix
or solving a matrix equation. It is also possible to
invert certain types of differential equations by
computer automation. The greatest progress in
understanding and automation has been made for
linear, constant-coefficient differential equations with
initial conditions.

LINEAR DIFFERENTIAL OPERATORS WITH
CONSTANT COEFFICIENTS

The general linear ODE of order n is

(n)

(n—1)

¥y +pi(z)y +...+pa(z)y = q(z).

(1)

From now on we will consider only the case where (1)
has constant coefficients. This type of ODE can be
written as
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(n)

y +(lly(71—l]+

4any = q(x);
any qla @

using the differentiation operator D, we can write (2) in
the form

(D® 4oy D™ +a,)y = q(x)
®3)
, p(D)y = q(z)
or more simply, where
p(D)=D"+a;D" ' +...+a,.
4)

We call p(D) a polynomial differential operator with
constant coefficients. We

think of the formal polynomial p(D) as operating on a
function y(x), converting- it into another function; it is
like a black box, in which the function y(x) goes in. and
p{D)y comes out.

\l‘ ".

p(D)

*p(D)_r

Our main goal in this section of the Notes is to develop
methods for finding particular solutions to the ODE (2)
when q(x) has a special form: an exponential, sine or
cosine, X', or a product of these. (The function gq(x) can
also be a sum of such special functions.) These are
the most important functions for the standard
applications.

The reason for introducing the polynomial operator
p(D) is that this allows us to use polynomial algebra to
help find the particular solutions. The rest of this paper
of the Notes will illustrate this. Throughout, we let

p(D) = D" Lo BP 1 e iy,

(4)
a constants.
DIFFERENTIAL OPERATORS

In this section, we study differential equations and their
associated differential operators. Only properties of
very simple differential equations can be proved by
working with their solutions, e.g., linear differential
equations with constant coefficients that form a
nilpotent matrix.

Differential Operators. More complicated differential
equations need a different approach, because their
solutions may not fall into decidable classes of
arithmetic, are not computable, or may not even exist
in closed form. As a proof technique for advanced
differential equations, we have introduced differential
invariants. Differential invariants turn the following
intuition into a formally sound proof procedure. If the
vector field of the differential equation always points
into a direction where the differential invariant F, which
is a logical formula, is becoming "more true , then the
system will always stay safe if it initially starts safe.
This principle can be understood in a simple but
formally sound way in the logic dC. Differential in-
variants have been introduced in, and later refined to a
procedure that computes differential invariants in a
fixed-point loop. Instead of our original presentation,
which was based on differential algebra, total deriva-
tives, and differential substitution, we take a
differential operator approach here. Both views are
fruitful and closely related.

ol . =

Definition 1 (Lie differential operator). Let® = ebe

the differential equation
LY - ol s

system ©1 = Or,.... 2, = On in vectorial

notation. The (Lie) differential operator belonging

tox’ = Bis the operator 0-V defined as

9
= ()li o 0,,0‘—
Ln

)

ll(
7

The'9z:>  *0z.) ‘gre partial derivative operators,
but can be considered as a basis of the tangent

space at x of the manifold on which &' = Bis defined.
The result of applying the differential

operator 0- Vto a differentiate function is

n

9 ) 9
0-V)f = Za f—r;,‘)lfl ---+0,,%

The differential operator lifts conjunctively to logical
formulas F:

@-VFE A (0-V)b~(0-V)c)
(b~e) in F
This conjunction is over all atomic

subformulas © ~ Cof F for any operator

~€{=,2,>,<.<}, In this definition, we assume that
formulas use dualities like—(a = b) =a < btg avoid

negations and the operator #is handled in a special
way; se previous work for a discussion. The functions
and terms in / and F need to be sufficiently smooth for
the partial derivatives to be defined and enjoy useful
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: o
properties like commutativity of 9= land (“)y. This is
the case for polynomials, which are arbitrarily

smooth ( e ) .

EQUATIONS WITH ANALYTIC COEFFICIENTS

Hyperfunctions.- In the study of differential operators
with C0O coefficients it is natural to work with Schwartz
distributions which form the largest class on which all
such operators are defined. However, when the
coefficients are real analytic it is possible to work
within the larger frame of Sato hyperfunctions. During
the past few years much work has been done along
such lines which has given many results parallel to
those for Schwartz distributions. We must content
ourselves here with referring to the survey by Schapira
and the lecture by M. Sato in these proceedings.

Uniformization - A study of the Cauchy problem with
data on a hypersurface which is partly characteristic
was initiated by Leray. He found that the solution
ramifies around the variety generated by the
bicharacteristics passing through the characteristic
points of the initial surface. A detailed analysis was
given by Garding, Kotake and Leray in the case of
linear systems. Later Choquet-Burhat has simplified
the proofs and extended the general result to non-
linear equations.

CONCLUSION

Differential invariants are a natural induction principle
for differential equations. The structure of general
differential invariants has been studied previously.
Here, we took a differential operator view and have
studied the case of equational differential invariants in
more detail. We have related equational differential
invariants to Lie's seminal work and subsequent
results about Lie groups. We have shown how the
resulting equivalence characterization of invariant
equations on open domains can be used, carefully
illustrate surprising challenges in invariant generation,
explain why they exist, and show with which
techniques they can be overcome. We have studied
the structure of invariant functions and invariant
equations, their relation, and have shown that, in the
presence of differential cuts, the invariant equations
and provable invariant equations form a chain of
differential ideals and that their varieties are generated
by a single invariant.

Finally, we relate differential invariants to partial
differential equations and explain how the inverse
characteristic method reduces the problem of
educational differential invariant generation to that of
solving partial differential equations.

. Alur,

. Evans, L.C.: Partial

REFERENCES

R., Courcoubetis, C., Halbwachs, N.,
Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero,
A., Sifakis, J., Yovine, S.: The algorithmic
analysis of hybrid systems. Theor. Comput.
Sci. 138(1), 3{34 (1995)

Di_erential
Graduate Studies in Mathematics, vol.
AMS, 2nd edn. (2010)

Equations,
19.

. Forsythe, George E. and Wolfgang R. Wasow,

Methods  for Partial
Wiley, New York,

Finite-Difference
Differential Equations,
1960.

. Grigor'ev, D.Y.. Complexity of quanti_er
elimination in the theory of ordinary
di_erential equations. In: Davenport, J.H.
(ed.) EUROCAL. LNCS, vol. 378, pp. 11{25.
Springer (1987)

. K. G. ANDERSSON. — Propagation of

analyticity of solutions of partial differential

equations with constant coefficients, Ark. for

Matematik, 8 (1970).

. Stakgold, Ivar, Boundary Value Problems of
Mathematical Physics, Volume I, Macmillan,
New York, 1968.

Abid Mushtaq” Dr. R. S. Singh?

w ‘ www.ignited.in



