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Abstract – A cyclic group is a group that is generated by a single element, in the sense that every element 
of the group can be written as a power of some particular element g in multiplicative notation, or as a 
multiple of g in additive notation. This element g is called a "generator" of the group. Any infinite cyclic 
group is isomorphic to Z, the integers with addition as the group operation. Any finite cyclic group of 
order n is isomorphic to Z/nZ, the integers modulo n with addition as the group operation. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

A group G is called cyclic if there exists an element g 

in G such that G = ⟨g⟩ = { g
n
 | n is an integer }. Since 

any group generated by an element in a group is a 
subgroup of that group, showing that the only 
subgroup of a group G that contains g is G itself 
suffices to show that G is cyclic. 

For example, if G = { g
0
, g

1
, g

2
, g

3
, g

4
, g

5
 } is a group, 

then g
6
 = g

0
, and G is cyclic. In fact, G is essentially 

the same as that is, isomorphic to the set { 0, 1, 2, 3, 
4, 5 } with addition modulo 6. For example, 1 + 2 ≡ 3 
(mod 6) corresponds to g

1
 · g

2
 = g

3
, and 2 + 5 ≡ 1 

(mod 6) corresponds to g
2
 · g

5
 = g

7
 = g

1
, and so on. 

One can use the isomorphism χ defined by χ(g
i
) = i. 

For every positive integer n there is exactly one cyclic 
group whose order is n, and there is exactly one 
infinite cyclic group . Hence, the cyclic groups are the 
simplest groups and they are completely classified. 

The name "cyclic" may be misleading: it is possible to 
generate infinitely many elements and not form any 
literal cycles; that is, every g

n
 is distinct. It can be said 

that it has one infinitely long cycle. A group generated 
in this way is called an infinite cyclic group, and is 
isomorphic to the additive group of integers Z. 

Furthermore, the circle group (whose elements are 
uncountable) is not a cyclic group—a cyclic group 
always has countable elements. 

Since the cyclic groups are abelian, they are often 
written additively and denoted Zn. However, this 
notation can be problematic for number theorists 
because it conflicts with the usual notation for p-adic 
number rings or localization at a prime ideal. The 
quotient notations Z/nZ, Z/n, and Z/(n) are standard 
alternatives. One may write the group multiplicatively, 
and denote it by Cn, where n is the order (which can be 

∞). For example, g
2
g

4
 = g

1
 in C5, whereas 2 + 4 = 1 in 

Z/5Z. 

A cyclic group is a group that can be generated by a 

single element (the group generator). Cyclic groups 
are Abelian.  

A cyclic group of finite group order is denoted , 

, , or  and its generator satisfies  

 

 

where is the identity element.  

The ring of integers form an infinite cyclic group 

under addition, and the integers 0, 1, 2, ..., ( ) 

form a cyclic group of order under addition (mod ). 
In both cases, 0 is the identity element.  

There exists a unique cyclic group of every order 

, so cyclic groups of the same order are always 
isomorphic . Furthermore, subgroups of cyclic groups 
are cyclic, and all groups of prime group order are 
cyclic. In fact, the only simple Abelian groups are the 

cyclic groups of order or a prime .  

The th cyclic group is represented in Mathematics 
as CyclicGroup[n], and an inefficient permutation 
group representation is given by CyclicGroup[n] in the 
Mathematica package Combinatorica .  

Examples of cyclic groups include , , , ..., and 

the modulo multiplication groups such that , 

4, , or , for an odd prime and  

More generally, if d is a divisor of n, then the number 
of elements in Z/n which have order d is φ(d). The 
order of the residue class of m is n / gcd(n,m). 

http://reference.wolfram.com/mathematica/ref/CyclicGroup.html
http://mathworld.wolfram.com/ModuloMultiplicationGroup.html
http://mathworld.wolfram.com/OddPrime.html
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Greatest_common_divisor
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If p is a prime number, then the only group (up to 
isomorphism) with p elements is the cyclic group Cp or 
Z/pZ. There are more numbers with the same property, 
see cyclic number. 

The direct product of two cyclic groups Z/nZ and Z/mZ 
is cyclic if and only if n and m are coprime. Thus e.g. 
Z/12Z is the direct product of Z/3Z and Z/4Z, but not 
the direct product of Z/6Z and Z/2Z. 

The definition immediately implies that cyclic groups 

have group presentation C∞ = ⟨x |⟩ and Cn = ⟨x | x
n
⟩ for 

finite n. 

A primary cyclic group is a group of the form Z/p
k
Z 

where p is a prime number. The fundamental theorem 
of abelian groups states that every finitely generated 
abelian group is the direct product of finitely many 
finite primary cyclic and infinite cyclic groups. 

Z/nZ and Z are also commutative rings. If p is a prime, 
then Z/pZ is a finite field, also denoted by Fp or GF(p). 
Every field with p elements is isomorphic to this one. 

The units of the ring Z/nZ are the numbers coprime to 
n. They form a group under multiplication modulo n 
with φ(n) elements (see above). It is written as (Z/nZ)

×
. 

For example, when n = 6, we get (Z/nZ)
×
 = {1,5}. When 

n = 8, we get (Z/nZ)
×
 = {1,3,5,7}. 

In fact, it is known that (Z/nZ)
×
 is cyclic if and only if n 

is 1 or 2 or 4 or p
k
 or 2p

k
 for an odd prime number p 

and k ≥ 1, in which case every generator of (Z/nZ)
×
 is 

called a primitive root modulo n. Thus, (Z/nZ)
×
 is cyclic 

for n = 6, but not for n = 8, where it is instead 
isomorphic to the Klein four-group. 

The group (Z/pZ)
×
 is cyclic with p − 1 elements for 

every prime p, and is also written (Z/pZ)
*
 because it 

consists of the non-zero elements. More generally, 
every finite subgroup of the multiplicative group of any 
field is cyclic. For example, this follows from the 
characterization below. 

Let G be a finite group. Then G is a cyclic group if, for 
each n > 0, G contains at most n elements of order 
dividing n. 

EXAMPLES 

In 2D and 3D the symmetry group for n-fold rotational 
symmetry is Cn, of abstract group type Zn. In 3D there 
are also other symmetry groups which are 
algebraically the same, see Symmetry groups in 3D 
that are cyclic as abstract group. 

Note that the group S
1
 of all rotations of a circle (the 

circle group) is not cyclic, since it is not even 
countable. 

The nth roots of unity form a cyclic group of order n 
under multiplication. e.g., 0 = z

3
 − 1 = (z − s

0
)(z − s

1
)(z 

− s
2
) where s = e

2πi/3
 and a group of {s

0
, s

1
, s

2
} under 

multiplication is cyclic. 

The Galois group of every finite field extension of a 
finite field is finite and cyclic; conversely, given a finite 
field F and a finite cyclic group G, there is a finite field 
extension of F whose Galois group is G. 

PROPERTIES OF CYCLIC GROUP :  

Given a cyclic group G of order n (n may be infinity) 
and for every g in G, 

 G is abelian; that is, their group operation is 
commutative: gh = hg (for all g and h in G). 
This is so since r + s ≡ s + r (mod n). 

 If n is finite, then g
n
 = g

0
 is the identity element 

of the group, since kn ≡ 0 (mod n) for any 
integer k. 

 If n = ∞, then there are exactly two elements 
that each generate the group: namely 1 and 
−1 for Z. 

 If n is finite, then it is isomorphic to the group 
{ [0], [1], [2], ..., [n − 1] } of integers modulo n 
under addition and there are exactly φ(n) 
elements that generate the group on their 
own, where φ is the Euler quotient function. 

 Every subgroup of G is cyclic. (see 
fundamental theorem of cyclic groups and 
see also a section below) Indeed, each finite 
subgroup of G is a group of { 0, 1, 2, 3, ..., m 
− 1 } with addition modulo m. And each 
infinite subgroup of G is mZ for some m, 
which is bijective to (so isomorphic to) Z. 

 Every quotient group of G is cyclic. In fact, 
under any group homomorphism, the image 
of a cyclic group is generated by the image of 
a generator of the cyclic group. 

IMPORTANCE OF CYCLIC GROUP : 

Cyclic groups are groups in which every element is a 
power of some fixed element. (If the group is abelian 
and I'm using + as the operation, then I should say 
instead that every element is a {it multiple} of some 
fixed element.) Here are the relevant definitions.  

Definition. Let G be a group, . The order of g 

is the smallest positive integer n such that . If 

there is no positive integer n such that , then 
g has infinite order.  

In the case of an abelian group with + as the 
operation and 0 as the identity, the order of g is the 

smallest positive integer n such that .  

http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Up_to
http://en.wikipedia.org/wiki/Group_isomorphism
http://en.wikipedia.org/wiki/Cyclic_number_%28group_theory%29
http://en.wikipedia.org/wiki/Direct_product_of_groups
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Presentation_of_a_group
http://en.wikipedia.org/wiki/Primary_cyclic_group
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Fundamental_theorem_of_finitely_generated_abelian_groups
http://en.wikipedia.org/wiki/Fundamental_theorem_of_finitely_generated_abelian_groups
http://en.wikipedia.org/wiki/Finitely_generated_abelian_group
http://en.wikipedia.org/wiki/Finitely_generated_abelian_group
http://en.wikipedia.org/wiki/Commutative_ring
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Isomorphism
http://en.wikipedia.org/wiki/Unit_%28ring_theory%29
http://en.wikipedia.org/wiki/Coprime
http://en.wikipedia.org/wiki/Multiplicative_group_of_integers_modulo_n
http://en.wikipedia.org/wiki/Odd_number
http://en.wikipedia.org/wiki/Prime_number
http://en.wikipedia.org/wiki/Primitive_root_modulo_n
http://en.wikipedia.org/wiki/Klein_four-group
http://en.wikipedia.org/wiki/Subgroup
http://en.wikipedia.org/wiki/Field_%28mathematics%29
http://en.wikipedia.org/wiki/Symmetry_group
http://en.wikipedia.org/wiki/Rotational_symmetry
http://en.wikipedia.org/wiki/Rotational_symmetry
http://en.wikipedia.org/wiki/Point_groups_in_three_dimensions#Cyclic_3D_symmetry_groups
http://en.wikipedia.org/wiki/Point_groups_in_three_dimensions#Cyclic_3D_symmetry_groups
http://en.wikipedia.org/wiki/Circle
http://en.wikipedia.org/wiki/Circle_group
http://en.wikipedia.org/wiki/Countable
http://en.wikipedia.org/wiki/Root_of_unity
http://en.wikipedia.org/wiki/Galois_group
http://en.wikipedia.org/wiki/Field_extension
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Abelian_group
http://en.wikipedia.org/wiki/Euler_totient_function
http://en.wikipedia.org/wiki/Fundamental_theorem_of_cyclic_groups
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Definition. If G is a group and , then the 
subgroup generated by g is  

 

If the group is abelian and I'm using + as the 
operation, then  

 

Definition. A group G is cyclic if for some 

. g is a generator of .  

If a generator g has order n, is cyclic of order 

n. If a generator g has infinite order, is 
infinite cyclic.  

Example. ( The integers and the integers mod n are 

cyclic) is an infinite cyclic group. (In fact, it is the 
only infinite cyclic group up to isomorphism.) Notice 

that is generated by 1 and by -1 --- a cyclic group 
can have more than one generator.  

If n is a positive integer, is a cyclic group of order n 
generated by 1.  

Theorem. Subgroups of cyclic groups are cyclic.  

Proof. Let be a cyclic group, where . 

Let . If , then H is cyclic with 

generator 1. So assume .  

On the other hand, if H contains a negative power of g 

--- say , where --- then , since H 
is closed under inverses. Hence, H again contains 
positive powers of g, so it contains a smallest positive 
power, by Well Ordering.  

So We have , the smallest positive power of g in 

H. I claim that generates H. I must show that every 

is a power of . Well, , so at 

least I can write for some n. But by the 
Division Algorithm, there are unique integers q and r 

such that   

It follows that  

 

Now , so . Hence, 

, so . However, was the 
smallest positive power of g lying in H. Since 

and , the only way out is if . 

Therefore, , and .  

This proves that generates H, so H is cyclic. 

 

Theorm. A finite cyclic group of order n contains a 
subgroup of order m for each positive integer m which 
divides n.  

Proof. Suppose G is a finite cyclic group of order n 

with generator g, and suppose . Thus, 
for some p.  

I claim that generates a subgroup of order m. The 

preceding proposition says that the order of is 

. However, , so . Therefore, 

has order  

 

In other words, generates a subgroup of order m.  

In fact, it's possible to prove that there is a unique a 
subgroup of order m for each m dividing n.  

Note that for an arbitrary finite group G, it isn't true 

that if , then G contains a cyclic subgroup of 
order n.  

Example. ( Subgroups of a cyclic group) contains 
subgroups of order 1, 3, 5, and 15, since these are 
the divisors of 15. The subgroup of order 1 is the 
identity, and the subgroup of order 15 is the entire 
group.  

The last result says:  

 If n divides 15, then there is a subgroup of 
order n --- in fact, a unique subgroup of order n.  

Since is cyclic, these subgroups must be cyclic. 
They are generated by 0 and the nonzero elements in 

which divide 15: 1, 3, and 5.  

 

Example. ( A product of cyclic groups) Consider the 
group  
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The operation is componentwise addition:  

 

It is routine to verify that this is a group, the direct 

product of and .  

The element has order 6:  

 

Hence, is cyclic of order 6. More generally, if 

, then is cyclic of order . Be 

careful! --- is {\it not} the same as  

A cyclic group is a group in which there is an element 
x such that each element of the group may be written 

as for some integer k. In additive notation, this 
translates to . We say that x is a generator of the 
cyclic group or that the group is generated by x.  

As an example, the integers under addition is a cyclic 
group. The number 1 is a generator. This is because 
for any n in the integers we have . Note that 
-1 is also a generator.  

Another example is provided by the set of complex 

numbers under multiplication of 

complex numbers. A generator is i since , 

, and . Note that -i is also a 
generator.  

For a finite cyclic group G having n elements, any 
element of order n is a generator. If x is a generator 

having order n then the order of is .  

It follows that a cyclic group is an abelian group 
although not every abelian group is a cyclic group. For 
example, the rational numbers under addition is not 
cyclic but is abelian.  
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