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Abstract – Modeling of high quality surfaces is the core of geometric modeling. Such models are used in 
many computer-aided design and computer graphics applications. Irregular behavior of higher-order 
differential parameters of the surface (e.g. curvature variation) may lead to aesthetic or physical 
imperfections. In this work, we consider methods for constructing surfaces with high degree of 
smoothness. 

This is an overview of recent research of the authors on the application of variational methods with 
higher–order derivatives in image processing. We focus on gray-valued and matrix-valued images and 
deal with a purely discrete setting. We show that regularization methods with second–order derivatives 
can be successfully applied to the denoising of gray–value images. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

High-order PDEs (fourth- and sixth-order in particular) 
arise in many geometric modeling operations requiring 
surface optimization: blending, hole-filling, curve 
network interpolation and interactive surface editing. 

In many cases, these PDEs are derived from 
functionals involving second- and third-order quantities 
(for example, curvature and curvature variation) in a 
variational setting. However, in many other cases 
geometric PDEs not derived from functional 
optimization can yield equally good results but with 
less complex formulation. 

Several formulations may be used in the discretization 
of high-order functionals. In one direction, sufficiently 
high-order basis functions are used to represent the 
surface. In this case, all higher-order derivatives can 
be computed point-wise. An advantage of this is the 
need for fewer discretization points to describe a 
smooth surface, similar to the limited number of control 
points needed to specify a patch. This way, one can 
avoid the need for highly refined meshes for the 
smooth surface approximation. Another advantage is 
the straightforward computation of the derivatives of 
functionals, as there exists a closed form describing 
the surface. Furthermore, convergence guarantees are 
easier to provide and faster convergence rates can be 
achieved. 

BACKGROUND 

High-quality free-form surface design requires 
formalizing the notion of surface quality, choosing 
equations for surface evolution resulting in the 
improvement of numerical quality criteria, and 
efficient techniques for solving these equations. In 
this section we review related work on each of these 
aspects of free-form surface design. 

Surface quality is typically evaluated using surface 
interrogation methods. Such methods visualize and 
quantitatively characterize the quality of different 
types of characteristic lines on surfaces: isophotes, 
principal curvature lines and reflection lines. 

These methods usually are not directly applied to 
construct or improve surfaces. Instead, a separate 
fairness functional or a flow equation is used to obtain 
an improved surface. Then interrogation methods are 
used to evaluate its quality, and, if necessary, adjust 
the way the surface is obtained. 

PDEs and functionals, as all necessary derivatives 
can be computed explicitly point-wise. However, in 
many applications it is essential to be able to deal 
with high-resolution meshes directly, both in the 
context of interrogation and surface construction and 
optimization. 

HIGHER–ORDER DERIVATIVES IN IMAGE 
PROCESSING 

In recent years mathematical methods from 
optimization theory, harmonic analysis, stochastics or 
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partial differential equations were successfully applied 
in digital image processing, while conversely image 
processing tasks have led to interesting mathematical 
questions. In this paper, we restrict our attention to 
applications of variational methods in conjunction with 
higher–order derivatives in image processing. In a 
couple of papers, these techniques have proved to be 
useful for scalar-valued images, vector-valued images 
and tensor-valued images. In this paper, we are only 
interested in scalar- and matrix–valued images, more 
precisely in the denoising of gray–value images and 
matrix fields. Vector-valued images are for example 
colored images or optical flow fields, see Fig. 1 
(middle). One of the authors has used higher–order 
regularization methods for the simultaneous estimation 
and decomposition of optical flows. Matrix-valued data 
have gained significant importance in recent years, 
e.g., in diffusion tensor magnetic resonance imaging 
(DT-MRI). Here, every image pixel corresponds 

 

Fig. 1. Gray-value image of the battle at the Alamo in 
San Antonio (left), vector-valued image of an optical 
flow field (middle), matrix-valued image of a DT-MRI 
slice (right). 

to a symmetric positive definite matrix A which can be 
visualized as the ellipsoid 

 

The lengths of the axes of the ellipsoid are the 
eigenvalues of A and the ellipsoid illustrates the 
direction of the diffusion of water molecules, see Fig. 1 
(right). 

A well-established method for the denoising of a 
scalar-valued image u from a given image f degraded 
by white Gaussian noise consists in calculating 

 

with a regularization parameter and an 

increasing function  in the 
penalizing term. The first summand encourages simi-
larity between the restored image and the original one, 
while the second term rewards smoothness. For the 

straightforward choice , the penalizing 

term coincides with the norm of u. The 
corresponding minimizcr becomes too smooth at 
edges. The frequently applied ROF-modcl introduced 

by Rudin. Oshcr and Fatemi with 

preserves sharp edges, but leads to 
the so-called staircasing effect. We will see that one 
way to overcome both artifacts is to use higher-order 
derivatives in the functional. 

HIGHER ORDER DERIVATIVES OF 
LYAPUNOV FUNCTIONS 

Consider the dynamical system 

(1) 

where has an equilibrium point at the 
origin (i.e., f (0) = 0), and satisfies the standard 
assumptions for existence and uniqueness of 
solutions; see e.g.  Chap. 3]. By higher order 

derivatives of a Lyapunov function we 
mean the time derivatives of V along the trajectories 
of (1) given 

by

= . In, 
Butz showed that existence of a three times 
continuously differentiable Lyapunov function V(x) 
satisfying 

(2) 

for all and for some nonnegative scalars  

implies global asymptotic stability of the origin of (1). 

Note that unlike the standard condition , 

condition (2) is not jointly convex in the scalars and 
the parameters of the Lyapunov function V(x). 
Therefore, computational techniques based on 
convex optimization cannot be used to search for a 
Lyapunov function satisfying (2). In, Heinen and 
Vidyasagar adapted the condition of Butz to establish 
a result on boundedness of the trajectories. More 
recently, Meigoli and Nikravesh have generalized the 
result of Butz to derivatives of higher order and to the 
case of time-varying systems. A simplified version of 
their result that is most relevant for our purposes 
deals with a differential inequality of the type 

(3) 

It is shown in that if the corresponding characteristic 
polynomial 

 

is Hurwitz (and some additional standard 
assumptions hold), then the inequality in (3) proves 
global asymptotic stability. It is later shown in that this 

condition can be weakened to having nonnegative 
coefficients. We will show that no matter what types 
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of conditions on V(x) and the scalars are 
placed, if the system is globally asymptotically stable 
and the inequality (3) holds (which is in particular the 
case if inequality (3) is used to establish global 
asymptotic stability), then we can explicitly extract a 
standard Lyapunov function from it. This will follow as 
a corollary of the following simple and general fact. 

Theorem 1.1: Consider a system that is 
known to be globally asymptotically stable. Suppose 
there exists a continuously differentiable function W (x) 

whose derivative along the trajectories is 
negative definite and satisfies W(0) = 0. Then, W(x) 
must be positive definite. 

Proof: Assume by contradiction that there exists a 

nonzero point such that . We 
evaluate the Lyapunov function W(x) along the 
trajectory of the system starting from the initial 

condition . The value of the Lyapunov function is 
nonpositive to begin with and will strictly decrease 

because . Therefore, the value of the 
Lyapunov function can never become zero. On the 
other hand, since we know that the vector field is 
globally asymptotically stable, trajectories of the 
system must all go to the origin, where we have W(0) 
= 0. This gives us a contradiction. 

CONCLUSION 

Modeling of high quality surfaces is the core of 
geometric modeling. Such models are used in many 
computer-aided design and computer graphics 
applications. Irregular behavior of higher-order 
differential parameters of the surface (e.g. curvature 
variation) may lead to aesthetic or physical 
imperfections. In this work, we presented three 
techniques for constructing surfaces with high degree 
of smoothness. 

As an alternative, we described a discrete-geometric 
construction for a simple and efficient method for 
discretizing reflection line based functionals on 
meshes and demonstrated how these functionals can 
be used in an interactive system to optimize the shape 
of reflective surfaces. 
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