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INTRODUCTION  

?reviewed. The most prominent collective degrees of 
freedom excited in these reactions are discussed 
within the framework provided by the natural hierarchy 
of their characteristic relaxation times. Both the 
quantal and classical aspects of these modes are 
described. The limitations of the Lagrangian treatment 
of heavy-ion reactions are pointed out, and a more 
general approach using transport theory is outlined. 
This latter approach is illustrated by the Langevin, 
Master and Fokker-Planck equations. The four most 
widely studied collective modes are then described in 
detail: the damping of the relative motion; the mass 
asymmetry degree of freedom; the isobaric charge 
distribution with iso-spin fluctuations and giant iso-
vector modes; rotational degrees of freedom. 

The K-shell ionization probability of the uranium like 
products has been measured in the deep-inelastic 
reaction U + U at a beam energy of 7.5 MeV/u as a 
function of the total kinetic energy loss −Q. PK was 
determined for Q values down to - 190 MeV. After the 
subtraction of the ionization induced by internal 
conversion of γ rays, a strongly Q- dependent PK is 
found in qualitative agreement with theoretical 
predictions. From the data we infer a nuclear reaction 
time of approximately 10−21s at Q=−100 MeV. 

Inelastic ion-induced nuclear reactions are calculated 
in the isobar model, which assumes that an interacting 
resonant ion and nucleon form an unstable particle, 
the Δ, which can propagate through the nucleus and 
either decay or be absorbed by interacting with other 
nucleons in the nucleus. The propagation of the 
particles is treated classically and the interactions are 
assumed to be incoherent. The lifetime of the Δ is 
taken to be energy dependent as prescribed by 
measured ion-nucleon scattering and the cross section 
of the Δ absorption is determined by measured ion 
production in two nucleon collisions. The formation of 
the Δ by a ion and nucleon and the subsequent 
absorption of the Δ provide a two-step mechanism for 
ion absorption. These calculations indicate that the ion 
is absorbed mostly on the inside forward edge of the 
nuclear surface where the nuclear density has almost 
reached central density. The calculations are 
compared with measured ion absorption cross 

sections, proton spectra, and spallation products in 
ion-induced reactions. All of these data indicate that p 
ion absorption is underestimated in this model by 
perhaps as much as 35%, particularly for low energy 

(∼ 100 MeV) ions. 

RESEARCH STUDY 

A considerable amount of data on inelastic collisions 
has been accumulated over the last three decades 
albeit limited in character. From these accumulated 
experimental data, it is possible to list the following 
general features of DIC. 

i) An essential feature is that these collisions 
preserve the binary character of the system, 
so that the final fragments maintain some 
resemblance to the initial nuclei. 

ii) These reactions involve a fast redistribution 
of protons and neutrons among the colliding 
nuclei, which is governed by strong driving 
forces associated with the potential energy 
surface of the di-nuclear complex. This fast 
rearrangement of neutrons and protons is 
called N/Z equilibration. The time involved in 
this equilibration is around 10

−22
 seconds. 

iii) Momentum analyses of the nuclide 
distributions indicate that the exchange of 
nucleons starts out in an uncorrelated 
fashion. Then, due to the confinements 
imposed on the exchange process by the 
gradients of the potential energy surface, a 
correlation develops with increasing energy 
loss. Moreover, there are indications that the 
development of charge and mass flow is not 
only determined by macroscopic dynamics 
and liquid-drop potentials, but for small 
bombarding energies and small energy 
losses, single-particle degrees of freedom 
and tunneling probabilities add to the 
complexity of the observed phenomena . 
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Figure 1: Semi classical description of an Inelastic 
Nuclear Reaction between heavy ions. 

iv) Angular momentum is transferred from relative 
orbital motion to the intrinsic spin of the two 
primary fragments 

v) The primary fragments produced in these 
reactions de-excite mainly through the 
evaporation of light particles, namely neutrons, 
protons and α-particles, the emission of γ rays 
and in the case of heavier fragments via 
fission. 

The following kinematic equations refer to the 
laboratory reference frame, where the nuclei in the 
target are considered at rest. If the reaction plane is 
defined by the direction of the incident beam and one 
of the outgoing particles, then conserving the 
component of momentum perpendicular to that plane 
shows immediately that the motion of the second 
outgoing particle must lie in the same plane. 

 

Figure 2: Reaction geometry. Projectile and target 
recoils define the reaction plane of the binary 
reaction. 

Conservation of linear angular momentum gives, 

P0 = Pp cos θp + Pt cos θt 

0 = Pp sin θp − Pt sin θt 

where P0 is the initial momentum of beam, Pp, Pt are 
the recoil momenta for the projectile and the target 

recoils respectively and θp, θt are the scattering angles 
for the projectile and target nuclei respectively. After 
some algebra manipulation, the relation of the recoil 
momenta to the initial beam momentum is given by 

Pp,t = P0  sin(θt, θp) / sin(θp + θt) 

In a non-relativistic approximation the momentum is 
given by P = 

m
βc, whereas the relativistic momentum 

is given by P = mβcγ where m is the mass and γ = 1 
√1−β2 

 

Figure 3: Calculated velocities of the projectile 
and the target recoils for the particular case of a 
136

Xe beam at 850 MeV in the laboratory frame 
impinging on a 

198
Pt target. An elastic collision 

and simple two-body kinematics have been 
assumed. 

If an elastic collision is assumed, where the energy 
conservation can be given by Equation, then using 
Equations for a given recoil angle, the recoil angle of 
the other fragment and the velocity of the recoils can 
be calculated using 

P
2
0 / 2m beam = P

2
p / 2mp + P

2
t / 2mt 

Figure shows the calculated velocities for the 
projectile and target recoils in the case of a 

136
Xe 

beam at laboratory energy of 850 MeV impinging on a 
198

Pt target. 

Unlike the fusion evaporation reactions where most of 
the input angular momentum of the reaction goes into 
the intrinsic angular momentum of the final products 
in inelastic collisions the transfer of angular 
momentum into intrinsic spins is not as efficient. 
There are different semi classical models to explain 
the angular momentum distribution of the nuclei 
produced in an inelastic collision. The sharing of the 
angular momenta between relative and intrinsic 
rotation depends upon the details of the frictional 
forces between the nuclei. The particular limiting 
cases of interest are sliding, rolling and sticking 
modes which correspond to minimum, intermediate 
and maximum angular momentum dissipation from 
the relative motion. 
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Consider a nucleus of radius rp approaching the target 
nucleus of radius rt at an impact parameter such that 
the initial angular momentum is L. In any real case 
there would be a distribution of L values corresponding 
to the range of partial waves that contribute to the DIC. 
After contact, the spheres will move around the centre 
of mass with an angular speed ω. Each sphere may 
have its own intrinsic rotation ωt and ωp. Conservation 
of angular momentum requires: 

L = μR
2
ω + фpωp + фtωt 

where R = rp + rt, is the moment of inertia and μ is the 
reduced mass, which is given in terms of the mass 
numbers of the target At and projectile Ap as 

μ = ApAt / Ap + A t 

and Jp = фpωp and Jt = фt . ωt are the intrinsic 
angular momenta of the projectile and target, whose 
calculated values can be compared with those 
obtained experimentally. The maximum angular 
momentum input in the reaction can be estimated to 
be, 

Lmax = 0.219 R √μ(Ecm − Vcm) 

The Sliding model is the simplest case and the one in 
which no angular momentum is put into the fragments 
since they slide with respect to one another. The 
sticking model corresponds to the case where the 
projectile and target stick together, each nucleus 
rotates around its own centre at the same speed, i.e. 
(ωp = ωt). This model is the one that converts more 
translational energy into rotational energy. 

From Equation one can deduce the following relative 
angular speed: 

ω = L / μR
2
 + ҝp + ҝt 

then 

Jp =( ҝp/ μR
2
 + ҝp + ҝt ) L 

and 

Jt =( ҝt/ μR
2
 + ҝt + ҝt ) L 

If the nucleus is considered to be a rigid sphere then ҝ 
= 2/ 5Ar

2
 and r = 1.2A 

1/3
, where A is the mass of the 

nucleus and r is its radius. For the reaction 
198

Pt + 
136

Xe at 
850

 MeV, the following values are obtained. An 
incident 

136
Xe beam at a laboratory energy of 

850
 MeV 

gives an L = Lmax = 297, then 

3Xe = 2/5 A Xe r
2
 Xe = 2072 fm

2
 a.m.u., 

3Pt = 2/5 A Pt r
2
 Pt = 3874 fm

2
 a.m.u., 

and 

μR
2 
= A Xe. A Pt /A Xe + A Pt (r Xe + r Pt)

2 
= 13973 fm

2
 

a.m.u. 

Therefore, the intrinsic spin put into the fragments for 
the sticking mode can be estimated to be 

JXe = 3Xe. L / μR
2
 + 3Xe + 3 Pt = 31 h 

Jpt = 3pt. L / μR
2
 + 3Xe + 3 Pt = 58 h 

The rolling model is a situation intermediate between 
the sliding and the sticking models, which arises in 
the presence of a strong frictional force. In the rolling 
case, the point of contact has a velocity equal to zero 
in the rest frame. 

The condition for not sliding is given by 

rp(ωp − ω) + rt(ωt − ω) = 0 

If a frictional force, F, is considered to be acting at the 
contact point, this force gives a torque on the 
projectile and the target in opposite directions, 

F x r → J 

Therefore, the angular momentum sharing is given 
by, 

Jp / Jt = rp / rt = χp wp/ χt wt  wp / wt =χ t rp / χp rt 

Combining Equations one obtains, 

Wt = χp rt Rw / χt r
2
p + χt r

2
p 

and 

Wt = χt rp Rw / χt r
2
p + χp r

2t
 

Recalling that ҝp = 2/ 5Apr
2
 p and ҝt = 2/ 5Atr

2
, the 

sum of the angular momenta of the projectile and 
target is given by, 

Jp + Jt = χp Wp + χt Wt = 2/5 uR
2
w 

Moreover, 

L = μR
2
ω + Jp + Jt = μR

2
ω + 2/ 5 μR

2
ω = 7/5 μR

2
ω 

Therefore, 

Jp + Jt = 2/7 L 

A fraction of 2/7 of the initial angular momentum is 
converted into the intrinsic angular momentum of the 
target and projectile while 5/7 stays in relative motion. 
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Combining Equations obtains, 

Jp = 2/7 (1 / 1 + (At / Ap)
1/3

). L 

So in the same case as before, for a 
136

Xe beam at a 
laboratory energy of 850 MeV incident on a 

198
Pt 

target, the angular momentum transferred to the 
fragments for the rolling mode can be estimated to be 

JXe ≈ 17~ 

and 

JPt ≈ 45~ 

In this case, the model predicts less angular 
momentum put into the fragments than in the case of 
the sticking model. 

For experimental purposes, it is very important to know 
where the grazing angle of the reaction in the 
laboratory frame is expected to be due to the fact that 
at this angle the binary reaction cross section is 
expected to be maximized. The grazing angle is the 
angle at which one can be sure that nuclear 
interactions happen, rather than only Coulomb or 
Rutherford interactions. It is defined as the angle at 
which the distance of closest approach, d, is given by 

d= (Zt Zp e
2
 /4πǫ0Ek) (1 + cos θ/2) 

where Zt and Zp are the atomic numbers of the two 
nuclei involved and Ek is the kinetic energy. The 
distance of the closest approach equals the sum of the 
nuclear radii, i.e. when the two nuclei are just touching, 
which can be estimated by the expression, 

d = 1.2 (A 
1/3

 t + A 
1/3

 p) fm 

where At and Ap are the nuclear mass numbers for the 
target and beam respectively. A quick estimate for the 
grazing angle can be obtained equalizing Equations. 
The grazing angle is roughly the same for beam and 
target-like fragments in the laboratory frame, i.e. 50◦. 

The Q-value of a nuclear reaction can be derived from 
the conservation of energy. In a nuclear reaction, the 
Q-value can be defined as 

Q = (minitial − mfinal)c
2 
= Tfinal − Tinitial 

where minitial and mfinal are the total initial and final 
masses of the system respectively and Tinitial, Tfinal 
are the total kinetic energies of the system before and 
after the reaction respectively. The Q-value may be 
positive or negative. If Q > 0 (Tfinal > Tinitial), then 
nuclear mass or binding energy is released as kinetic 
energy, which is shared between the final products. 
On the contrary, when Q < 0 (Tfinal < Tinitial), then the 
kinetic energy has been converted into binding energy. 
The changes in mass and energy must be related by 

the Einstein’s familiar equation from special relativity, 
∆E = ∆mc

2
. 
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