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INTRODUCTION  

A field is a non-zero commutative ring that contains 
a multiplicative inverse for every nonzero element, or 
equivalently a ring whose nonzero elements form an 
abelian group under multiplication. As such it is 
an algebraic structure with notions of addition, 
subtraction, multiplication and division satisfying the 
appropriate abelian group equations and distributive 
law. The most commonly used fields are the field 
of real numbers, the field of complex numbers, and the 
field of rational numbers, but there are also finite fields, 
fields of functions, algebraic number fields, p-adic 
fields, and so forth. 

Any field may be used as the scalars for a vector 
space, which is the standard general context for linear 
algebra. The theory of field extensions (including 
Galois theory) involves the roots of polynomials with 
coefficients in a field; among other results, this theory 
leads to impossibility proofs for the classical problems 
of angle trisection and squaring the circle with a 
compass and straightedge, as well as a proof of 
the Abel–Ruffini theorem on the algebraic insolubility 
of quintic equations. In modern mathematics, the 
theory of fields (or field theory) plays an essential role 
in number theory and algebraic geometry. 

As an algebraic structure, every field is a ring, but not 
every ring is a field. The most important difference is 
that fields allow for division (though not division by 
zero), while a ring need not possess multiplicative 
inverses; for example the integers form a ring, but 
2x = 1 has no solution in integers. Also, the 
multiplication operation in a field is required to 
be commutative. A ring in which division is possible but 
commutativity is not assumed (such as the 
quaternions) is called a division ring or skew field. 
(Historically, division rings were sometimes referred to 
as fields, while fields were called commutative fields.) 

As a ring, a field may be classified as a specific type 
of integral domain, and can be characterized by the 
following (not exhaustive) chain of class inclusions: 

Commutative rings ⊃ integral domains ⊃ integrally 

closed domains ⊃ unique factorization domains ⊃ 

principal ideal domains ⊃ Euclidean 
domains ⊃ fields ⊃finite fields. 

Intuitively, a field is a set F that is a commutative 
group with respect to two compatible operations, 
addition and multiplication (the latter excluding zero), 
with "compatible" being formalized by distributive and 
the caveat that the additive and the multiplicative 
identities are distinct (0 ≠ 1). 

The most common way to formalize this is by defining 
a field as a set together with two operations, usually 
called addition and multiplication, and denoted by + 
and ·, respectively, such that the following axioms 
hold; subtraction and division are defined in terms of 
the inverse operations of addition and multiplication: 

Closure of F under addition and multiplication 

For all a, b in F, both a + b and a · b are in F (or more 
formally, + and · are binary operations on F). 

Associativity of addition and multiplication 

For all a, b, and c in F, the following equalities 
hold: a + (b + c) = (a + b) + c anda · (b · c) = (a · b) 
· c. 

Commutativity of addition and multiplication 

For all a and b in F, the following equalities 
hold: a + b = b + a and a · b = b · a. 

Existence of additive and multiplicative identity 
elements 

There exists an element of F, called the additive 
identity element and denoted by 0, such that for 
all a in F, a + 0 = a. Likewise, there is an element, 
called the multiplicative identity element and denoted 
by 1, such that for all a in F, a · 1 = a. To exclude 
the trivial ring, the additive identity and the 
multiplicative identity are required to be distinct. 

Existence of additive inverses and multiplicative 
inverses 
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For every a in F, there exists an element −a in F, such 
that a + (−a) = 0. Similarly, for any a in F other than 0, 
there exists an element a

−1
 in F, such that a · a

−1
 = 1. 

(The elements a + (−b) and a · b
−1

 are also 
denoted a − b and a/b, respectively.) In other words, 
subtraction and division operations exist. 

Distributivity of multiplication over addition 

For all a, b and c in F, the following equality holds: a · 
(b + c) = (a · b) + (a · c). 

A field is therefore an algebraic structure 〈F, +, ·, 

−, 
−1

, 0, 1〉; of type 〈2, 2, 1, 1, 0, 0〉, consisting of 

two abelian groups: 

 F under +, −, and 0; 

 F ∖ {0} under ·, 
−1

, and 1, with 0 ≠ 1, 

with · distributing over +. 

First example: rational numbers 

A simple example of a field is the field of rational 
numbers, consisting of numbers which can be written 
as fractions a/b, where a and b are integers, and b ≠ 0. 
The additive inverse of such a fraction is simply −a/b, 
and the multiplicative inverse (provided that a ≠ 0) 
is b/a. To see the latter, note that 

 

The abstractly required field axioms reduce to 
standard properties of rational numbers, such as the 
law of distributivity 

 

 

 

 

 

or the law of commutativity and law of associativity. 

REVIEW OF RELATED LITERATURE 

The concept of field was used implicitly by Niels Henrik 
Abel and Évariste Galois in their work on the solvability 
of polynomial equations with rational coefficients of 
degree five or higher. 

Karl von Staudt published his Algebra of Throws which 
provided a geometric model satisfying the axioms of a 
field. This construction has been frequently recalled as 
a contribution to the foundations of mathematics. 

Richard Dedekind introduced, for a set of real or 
complex numbers which is closed under the four 
arithmetic operations, the German word Körper, which 
means "body" or "corpus" (to suggest an organically 
closed entity), hence the common use of the letter K to 
denote a field. He also defined rings (then 
called order or order-modul), but the term "a ring" 
(Zahlring) was invented by Hilbert. 

Eliakim Hastings Moore called the concept "field" in 
English. Leopold Kronecker defined what he called a 
"domain of rationality", which is indeed a field of 
polynomials in modern terms. 

Heinrich M. Weber gave the first clear definition of an 
abstract field. Ernst Steinitz published the very 
influential paper Algebraische Theorie der Körper. In 
this paper, he axiomatically studies the properties of 
fields and defines many important field theoretic 
concepts like prime field, perfect field and the 
transcendence degree of a field extension. 

Examples 

Rationals and algebraic numbers 

The field of rational numbers Q has been introduced 
above. A related class of fields very important 
in number theory are algebraic number fields. We will 
first give an example, namely the field Q(ζ) consisting 
of numbers of the form 

a + bζ 

with a, b ∈ Q, where ζ is a primitive third root of unity, 
i.e., a complex number satisfying ζ

3
 = 1,ζ ≠ 1. This 

field extension can be used to prove a special case 
of Fermat's last theorem, which asserts the non-
existence of rational nonzero solutions to the equation 

x
3
 + y

3
 = z

3
. 

In the language of field extensions detailed 
below, Q(ζ) is a field extension of degree 2. Algebraic 
number fields are by definition finite field extensions 
of Q, that is, fields containing Q having finite 
dimension as a Q-vector space. 

Reals, complex numbers and p-adic numbers 
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http://en.wikipedia.org/wiki/David_Hilbert
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Take the real numbers R, under the usual operations 
of addition and multiplication. When the real numbers 
are given the usual ordering, they form 
a complete ordered field; it is this structure which 
provides the foundation for most formal treatments 
of calculus. 

The complex numbers C consist of expressions 

a + bi 

where i is the imaginary unit, i.e., a (non-real) number 
satisfying i

2
 = −1. Addition and multiplication of real 

numbers are defined in such a way that all field axioms 
hold for C. For example, the distributive law enforces 

(a + bi)·(c + di) = ac + bci + adi + bdi
2
, which 

equals ac−bd + (bc + ad)i. 

The real numbers can be constructed 
by completing the rational numbers, i.e., filling the 
"gaps": for example √2 is such a gap. By a formally 
very similar procedure, another important class of 
fields, the field of p-adic numbers Qp is built. It is used 
in number theory and p-adic analysis. 

Hyper real numbers and super real numbers extend 
the real numbers with the addition of infinitesimal and 
infinite numbers. 

Constructible numbers 

 

Given 0, 1, r1 and r2, the construction yields r1·r2 

In antiquity, several geometric problems concerned the 
(in) feasibility of constructing certain numbers with 
compass and straightedge. For example it was 
unknown to the Greeks that it is in general impossible 
to trisect a given angle. Using the field notion and field 
theory allows these problems to be settled. To do so, 
the field of constructible numbers is considered. It 
contains, on the plane, the points 0 and 1, and all 
complex numbers that can be constructed from these 
two by a finite number of construction steps using 
only compass and straightedge. This set, endowed 
with the usual addition and multiplication of complex 
numbers does form a field. For example, multiplying 
two (real) numbers r1 and r2 that have already been 
constructed can be done using construction at the 
right, based on the intercept theorem. This way, the 

obtained field F contains all rational numbers, but is 
bigger than Q, because for any f ∈ F, the square 
root of f is also a constructible number. 

A closely related concept is that of a Euclidean field, 
namely an ordered field whose positive elements are 
closed under square root. The real constructible 
numbers form the least Euclidean field, and the 
Euclidean fields are precisely the ordered extensions 
thereof. 

GENERALIZATIONS 

There are also proper classes with field structure, 
which are sometimes called Fields, with a capital F: 

 The surreal numbers form a Field containing 
the reals and would be a field except for the 
fact that they are a proper class, not a set. 

 The numbers form a Field. The set of 
numbers with birthday smaller than 2

2n
, the 

nimbers with birthday smaller than any 
infinite cardinal are all examples of fields. 

In a different direction, differential fields are fields 
equipped with a derivation. For example, the 
field R(X), together with the standard derivative of 
polynomials forms a differential field. These fields are 
central to differential Galois theory. Exponential 
fields, meanwhile, are fields equipped with an 
exponential function that provides a homomorphism 
between the additive and multiplicative groups within 
the field. The usual exponential function makes the 
real and complex numbers exponential fields, 
denoted Rexp and Cexp respectively. 

APPLICATIONS 

The concept of a field is of use, for example, in 
defining vectors and matrices, two structures in linear 
algebra whose components can be elements of an 
arbitrary field. Finite fields are used in number 
theory, Galois theory, cryptography, coding theory 
and combinatory and again the notion of algebraic 
extension is an important tool. The theory of finite 
fields, whose origins can be traced back to the works 
of Gauss and Galois, has played a part in various 
branches in mathematics. In recent years we have 
witnessed a resurgence of interest in finite fields and 
this is partly due to important applications in coding 
theory and cryptography. Among the topics studied 
are different methods of representing the elements of 
a finite field (including normal bases and optimal 
normal bases), algorithms for factoring polynomials 
over finite fields, methods for constructing irreducible 
polynomials, the discrete logarithm problem and its 
implications to cryptography, the use of elliptic curves 
in constructing public key cryptosystems and the 
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http://en.wikipedia.org/wiki/Exponential_field
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http://en.wikipedia.org/wiki/Exponential_function
http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Linear_algebra
http://en.wikipedia.org/wiki/Linear_algebra
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http://en.wikipedia.org/wiki/Number_theory
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http://en.wikipedia.org/wiki/Galois_theory
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Coding_theory
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uses of algebraic geometry in constructing good error-
correcting codes. 
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