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Abstract – In the last ten years, there has been significant improvement and growth in tools that aid the 
development of finite element methods for solving partial differential equations. These tools assist the 
user in transforming a weak form of a differential equation into a computable solution. Despite these 
advancements, solving a differential equation remains challenging. Not only are there many possible 
weak forms for a particular problem, but the most accurate or most efficient form depends on the 
problem’s structure. Requiring a user to generate a weak form by hand creates a significant hurdle for 
someone who understands a model, but does not know how to solve it. 

In this article a symmetry group of scaling transformations is determined for a partial differential equation 
of fractional order α, containing among particular cases the diffusion equation, the wave equation, and 
the fractional diffusion-wave equation.  

The conventional differential quadrature (DQ) method is limited in its application to regular regions by 
using functional values along a mesh line to approximate derivatives. In this work, we extend the idea of 
DQ method to a general case. In other words, any spatial derivative is approximated by a linear weighted 
sum of all the functional values in the whole physical domain. In the last ten years, there has been 
significant improvement and growth in tools that aid the development of finite element methods for 
solving partial differential equations. These tools assist the user in transforming a weak form of a 
differential equation into a computable solution. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

The key defining property of a partial differential 
equation (PDE) is that there is more than one 

independent variable There is a dependent 
variable that is an unknown function of these 

variables We will often denote its 

derivatives by subscripts; thus , and so 
on. A PDE is an identity that relates the independent 
variables, the dependent variable //, and the partial 
derivatives of //. It can be written as 

 (1) 

This is the most general PDE in two independent 
variables of first order. The order of an equation is the 
highest derivative that appears. The most general 
second-order PDE in two independent variables is 

 (2) 

A solution of a PDE is a function that 
satisfies the equation identically, at least in some 

region of the variables. 

When solving an ordinary differential equation (ODE), 
one sometimes reverses the roles of the independent 
and the dependent variables—for instance, for the 

separable . For PDEs, the distinction 
between the independent variables and the 
dependent variable (the unknown) is always 
maintained. 

Some examples of PDEs (all of which occur in 
physical theory) are: 

1. ux + uy = 0 (transport) 

2. ux + yuy = 0 (transport) 

3. ux + uuy = 0 (shock wave) 

4. uxx + uyy = 0 (Laplace's equation) 
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5. utt — uxx + u
3
 = 0 (wave with interaction) 

6. ut + uux + uxxx = 0 (dispersive wave) 

7. Utt + Uxxxx = 0 (vibrating bar) 

8. ut — iuxx — 0 (/ = ) (quantum 
mechanics) 

Each of these has two independent variables, written 
either as x and y or as x and t. Examples 1 to 3 have 
order one; 4, 5, and 8 have order two; 6 has order 
three; and 7 has order four. Examples 3,5, and 6 are 
distinguished from the others in that they are not 
"linear.'' We shall now explain this concept. 

Linearity means the following. Write the equation in the 

form  where is an operator. That is, if t' is 

any function, is a new function. For 

instance, is the operator that takes into 

its partial derivative  In Example 2, the 

operator is .( .) 
The definition we want for linearity is 

 (3) 

for any functions //, and any constant c. Whenever 

(3) holds (for all choices of //, , and c), is called 
linear operator. The equation 

 (4) 

is called linear if is a linear operator. Equation (4) is 
called a homogeneous linear equation. The equation 

 (5) 

where is a given function of the independent 
variables, is called an inhomogeneous linear equation. 
For instance, the equation 

 (6) 

is an inhomogeneous linear equation. 

As you can easily verify, five of the eight equations 
above are linear as well as homogeneous. Example 5, 
on the other hand, is not linear because 

although and

 satisfy property (3), the 
cubic term does not: 

 

The advantage of linearity for the equation is 

that if u and v are both solutions, so is >. 

If are all solutions, so is any linear 
combination 

 

(This is sometimes called the superposition principle.) 
Another consequence of linearity is that if you add a 
homogeneous solution to an inhomogeneous solution, 
you get an inhomogeneous solution. (Why?) The 
mathematical structure that deals with linear 
combinations and linear operators is the vector 
space.  

We'll study, almost exclusively, linear systems with 
constant coefficients. Recall that for ODEs you get 
linear combinations. The coefficients are the arbitrary 
constants. For an ODE of order rn, you get rn 
arbitrary constants. 

BASIC DEFINITIONS  

To start with partial differential equations, just like 
ordinary differential or integral equations, are 
functional equations. That means that the unknown, 
or unknowns, we are trying to determine are 
functions. In the case of partial differential equations 
(PDE) these functions are to be determined from 
equations which involve, in addition to the usual 
operations of addition and multiplication, partial 
derivatives of the functions. The simplest example, 
which has already been described this compendium, 

is the Laplace equation in , 

 (7) 

where . The other two 
examples described fundamental mathematical 
definitions are the heat equation, with k = 1, 

 (8) 

and the wave equation with k = 1, 

 (9) 

In these last two cases one is asked to find a 

function , depending on the variables t, x, y,z, which 
verifies the corresponding equations. Observe that 

both (8) and (9) involve the symbol which has the 
same meaning a5 in the first equation, that is 
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. 

Both equations are called evolution equations, simply 
because they are supposed to describe the change 
relative to the time parameter t of a particular physical 
object . Observe that (1) can be interpreted as a 
particular case of both (9) and (8). Indeed 

solutions of either (3) or (2) which 

are independent of t, i.e. , verify (7). 

A variation of (9), important in modern particle physics, 
is the Klein-Gordon equation, describing the free 
evolution, i.e. in the absence interactions, of a massive 
particle. 

 (10) 

Another basic equation of mathematical physics, which 
describes the time evolution of a quantum particle, is 
the Schrodinger equation, 

 (11) 

with u a function of the same variables (£, x, y, z) with 

values in the complex space and , 

where corresponds to the Planck constant 

and  the mass of the particle. As with our 
other two evolution equations, (8) and (9). above we 
simplify our discussion by taking k = 1. 

Observe that all three PDE mentioned above satisfy 
the following simple property called the principle of 

superposition: If are solutions of an equation 
so is any linear combination of 

them where and are arbitrary 
real numbers. Such equations are called linear. The 
following equation, called the minimal surfaces 
equation, is manifestly not linear. It refers to 

functions which verify 

 (12) 

Here and are short hand notations for the 

partial derivatives and  The equations we 
have encountered so far can be written in the 

form , where is a differential operator 

applied to . A differential operator is simply a rule 

which takes functions u, defined in or an open 

subset of it, into functions by performing the 
following operations: 

• We can take partial derivatives relative to 

the variables x = (x
1
,x

2
,.. .x

n
) of . One allows also 

higher partial derivatives of u such as the mixed 

second partials  The 
associated differential operators for (2) 

is and that of 

(3) is  

 

• Can add and multiply u and its partial derivatives 
between themselves as well as with given functions 
of the variables x. Composition with given functions 
may also appear. 

In the case ofthe equation (1) the associated 

differential operator is  

where is the 
diagonal 3x3 matrix with entries (1,1,1) corresponding 

to the euclidean scalar product of vectors X,Y in , 

 (13) 

The associated differential operators for (8), (9) and 

(11) are, resp.  

and with variables 

are . In the particular case of 
the wave equation (9) it pays to denote the variable t 

by . The wave operator can then be written in the 
form, 

 (14) 

where m
a3

 is the diagonal 4x4 matrix with entries (—
1,1,1,1), corresponding to the Minkowski scalar 

product in . This latter is defined, for 4 vectors 

 and  . 

The differential operator is called D'Alembertian 
after the name of the French mathematician who has 
first introduced it in connection to the equation of a vi-
brating string. 
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Observe that the differential operators associated to 
the equations (l)-(5) are all linear i.e. 

 

for any functions and real numbers . The 
following is another simple example of a linear 
differential operator 

 (15) 

where and a1,a2 are given functions of 
x. They are called the coeffi cients of the linear 

operator. An equation of the form , 

corresponding to a linear differential operator and a 

given function , is called linear even though, 

for , the principle of superposition of solutions 
does not hold. 

In the case of the equation (12) the differential 

operator can be written, relative to the 

variables and , in the form, 

 

where . Clearly is 
not linear in this case. We call it a nonlinear operator; 
the corresponding equation (6) is said to be a 
nonlinear equation. An important property of both 
linear and nonlinear differential operators is locality. 

This means that whenever we apply to a function u, 
which vanishes in some open set D, the resulting 

function also vanish in D. 

Observe also that our equations (7)-(11) are also 
translation invariant. This means, in the case (1) for 

example, that whenever the function is a 

solution so is the function  where  

is the translation .  On the other hand 

the equation , corresponding to the 
operator defined by (15) is not, unless the 
coefficients ai,a2 are constant. Clearly the set of 

invertible transformations which map 

any solution , of , to another 

solution form a group, called the 
invariance group of the equation. The Laplace 
equation (7) is invariant not only with respect to 
translations but also rotations, i.e linear 

transformations which preserve the 

euclidean scalar product, i.e. for 

all vectors  . So far we have tacitly 

assumed that our equations take place in the whole 

space ( for the first, for the second, third and 

fourth and for the last example). In reality one is 
often restricted to a domain of the corresponding 
space. Thus, Partial differential equations are 
ubiquitous throughout Mathematics and Science. They 
provide the basic mathematical framework for some of 
the most important physical theories, such as 
Elasticity, Hydrodynamics, Electromagnetism, General 
Relativity and Non-relativistic Quantum Mechanics. 
The more modern relativistic quantum field theories 
lead, in principle, to equations in infinite number of un-
knowns, which lie beyond the scope of partial 
differential equations. Yet, even in that case, the basic 
equations preserve the locality property of PDE. 
Moreover the starting point of a quantum field theory is 
always a classical field theory, described by systems 
of PDE's. This is the case, for example, of the 
Standard Model of weak and strong interactions, 
based on a Yang -Mills-Higgs field theory. If we also 
include the ordinary differential equations of Classical 
Mechanics, which can be viewed as one dimensional 
PDE, we see that, essentially, all of Physics is 
described by differential equations. As examples of 
partial differential equations underlining some of our 
most basic physical theories we refer to the articles of 
the compendium in which the Maxwell, Yang-Mills, 
Einstein, Euler and Navier Stokes equations are 
introduced. 

PARTIAL DIFFERENTIAL EQUATION OF 
FRACTIONAL ORDER 

In this paper we present the group-invariant solutions 
of a partial differential equation of fractional order 
containing among particular cases the diffusion 

equation , the wave equation . and 
the so-called fractional diffusion-wave 

equation . This equation is obtained by 
replacing the first or second order time-derivative in 
the diffusion or wave equation, respectively, by a 

generalized derivative of order , defined in the 
sense of the Riemann-Liouville fractional calculus: 

 (16) 

With 

 

Such equations have already appeared both in texts 
in physics and mathematics. Mathematical aspects of 
the boundary-value problems for this equation and for 
more general ones and their applications in physics 
have been treated in papers by Engler , Saichev and 
Zaslavski . In a series of papers  and the references 
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there) the two basic boundary- value problems for the 

fractional diffusion-wave equation were 

considered:  

a) Cauchy problem: 

 

b) Signaling problem: 

 

By using integral transforms (Laplace, Fourier or Mellin 

type) the Green's functions and for 
these problems were expressed in terms of some 
special functions (of Wright or Mittag-Leffier type, Fox 
H-function) with the similarity 

argument . We will explain this 
fact in our article and determine by using the method 
of group analysis that Eq. (1) is in fact invariant under 
a symmetry group of scaling transformations. 

The method of group analysis of differential equations 
began with the work of Sophus Lie more than a 
hundred years ago. Roughly speaking a symmetry 
group of a system of differential equations is a group 
which transforms solutions of the system to other 
solutions. For partial differential equations one can 
determine special types of solutions, which are 
invariant under some subgroup of the full symmetry 
group of the system. These 'group-invariant* solutions 
are found by solving a reduced system of equations 
having fewer independent variables than the original 
system. 

In recent years the ideas of the Lie group approach 
have been extended to difference equations and also 
to integro-differential equations.  

One can find the full symmetry groups of the diffusion 
and the wave equation. Here we will focus on the so-
called similarity method, developed by G. D. Birkhoff in 
the 1930s and consider the special case of scaling 
transformations. 

In the general case one cannot use the chain 
rule for the operation of differentiation to get a reduced 
equation for the scale-invariant solutions of (16) as in 

the case of partial differential equations i . In 
spite of this we will transform Eq. (16) into an ordinary 
differential equation of fractional order with the new 

independent variable . The derivative then 
is an Erdelvi-Kober derivative depending on a 

parameter . For and (the diffusion 
and the wave equations) this reduced equation corre-

sponds to the ordinary differential equations well 
known in the literature. 

SOLUTION OF PARTIAL DIFFERENTIAL 
EQUATIONS BY A GLOBAL RADIAL BASIS 
FUNCTION BASED DQ METHOD 

The differential quadrature (DQ) method was 
introduced by Richard Bellman and his associates in 
the early of 1970s, following the idea of integral 
quadrature. The basic idea of the DQ method is that 
any derivative at a mesh point can be approximated by 
a weighted linear sum of all the functional values along 
a mesh line. The key procedure in the DQ method is 
the determination of weighting coefficients. 

As shown by Shu and Richards , when the solution of 
a partial differential equation (PDE) is approximated 
by a high order polynomial, the weighting coefficients 
can be computed by a simple algebraic formulation or 
by a recurrence relationship. Later, Shu and Chew 
also showed that when the solution of the PDE is 
approximated by a Fourier series expansion, the 
weighting coefficients of the first- and second-order 
derivatives can be computed explicitly by algebraic 
formulations. The details of the polynomial-based and 
Fourier series expansion-based DQ methods can be 
found in the book of Shu. Currently, the DQ method 
has been extensively applied in engineering for the 
rapid and accurate solution of various linear and 
nonlinear differential equations. 

On the other hand, it is noted that the function 
approximation (polynomial or Fourier series 
expansion) in the DQ method is along a straight line. 
This means that numerical discretization of 
derivatives by the DQ method is also along a straight 
line. Due to this feature, the DQ method can be 
directly applied to regular regions, such as 
rectangular and circular domains. For complex 
geometry, the DQ method cannot be directly applied. 
One has to rely on the coordinate transformation 
technique. In this technique, the irregular domain in 
the physical space is first mapped to a regular 
domain in the computational space. 

Then the differential equations and their associated 
boundary conditions are transformed into relevant 
forms in the computational space. The numerical 
discretization is only made in the computational 
space by the DQ method. Although this technique 
can obtain very good results for problems with 
complex geometry, we have to admit that the process 
is very complicated, and the approach is not as 
flexible as the finite element method. Practically, 
there is a demanding to develop a more efficient 
method for solving complex problems. 

It was found that the need of coordinate 
transformation by the DQ method for complex 
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problems is actually due to its discretization along a 
straight line. Furthermore, we found that the DQ 
discretization along a straight line is due to one-
dimensional function approximation used. It is 
expected that if a two-dimensional polynomial is used 
to approximate a function, the DQ approximation of a 
derivative can involve any point on the two-
dimensional plane. And as a consequence, no 
coordinate transformation is needed. This is the idea 
of differential cubature (DC) method. Unfortunately, 
due to oscillatory feature of high order polynomials, the 
DC method can only obtain stable solution of a PDE 
by using a limited number of mesh points. It seems 
that the multi-dimensional polynomial approximation 
as the test function may not be a good choice in the 
DQ approximation. As will be shown in this paper, the 
radial basis functions (RBFs), which have ‘truly’ 
meshless property and insensitivity to high dimension, 
could be a good choice in the DQ approximation. 

RBFs have been under intensive research as a 
technique for multivariate data and function 
interpolation in the past decades, especially in multi-
dimensional applications. Their performance 
demonstrates that RBFs constitute a powerful 
framework for interpolating or approximating data on 
nonuniform grids. Furthermore, Buhmann and 
Micchelli  showed that RBFs are attractive for pre-
wavelet construction due to their exceptional rates of 
convergence and infinite differentiability. Since RBFs 
have excellent performance for function 
approximation, many researchers turn to explore their 
ability for solving PDEs. In other words, as the spatial 
dimension of the problem increases, the convergence 
order also increases, and hence, much fewer 
scattered collocation points will be needed to maintain 
the same accuracy as compared with conventional 
finite difference, finite element and finite volume 
methods. This shows the applicability of the RBFs for 
solving high-dimensional problems.  

The process is very complicated, especially for 
nonlinear problems. For the nonlinear case, some 
special techniques such as numerical continuation and 
bifurcation approach proposed by Fedoseyev et al.  
have to be used to solve the resultant nonlinear 
equations. Since the techniques are very complicated, 
it is not easy to apply them for solving practical 
problems such as fluid dynamics, which usually require 
a large number of mesh points for accurate solution. 

As will be shown in this paper, the advantages of the 
DQ approximation and RBFs can be combined to 
provide an efficient discretization method, which is a 
derivative approximation approach and is mesh-free. 
In our proposed method, the RBFs are taken as the 
test functions in the DQ approximation to compute the 
weighting coefficients. Once the weighting coefficients 
are computed, the solution process for a PDE by the 
new method is exactly the same as the conventional 
DQ method and finite difference schemes. Moreover, 
the new method can be consistently well applied to 
linear and nonlinear problems. Our numerical 

experiments demonstrate that this new method not 
only inherits the advantages of the DQ method such 
as high accuracy and efficient computation, but also 
owns the merits of RBFs such as mesh-free feature 
and easy extension to high dimension. This article is 
the first of a series works. We hope to present a new 
framework in applying the DQ method to practical 
problems. 

SOLUTION OF A PARTIAL DIFFERENTIAL 
EQUATION FROM THE STRONG FORM 

The variety of algorithms used to solve a partial 
differential equation has been both an asset as well as 
a burden. On one hand, we have an assortment of 
extremely sophisticated tools that allow us to solve a 
diverse set of problems. On the other, the 
heterogeneous nature of these algorithmsmakes it 
challenging to design a generalmodeling tool. 

Within the realm of finite element methods, there has 
been considerable progress towards this 
goal.Modeling tools such as deal.II , FEniCS, 
FreeFEM, GetDP , and Sundance  allow the user to 
specify the weak form of a differential equation by 
hand. Then, given a specific kind of element, these 
tools either assist in or automate the construction of 
the linear system that arises from the discretization. 

In spite of their usefulness, these tools assume that 
their user possesses the technical expertise to find 
the weak form of a differential equation. 
Unfortunately, this can be a difficult task. Ideally, we 
would like a system that can transform the original 
strong form of the differential equation into a 
computable solution. This would allow a user with far 
less technical knowledge to solve a problem than is 
currently possible. While it is doubtful that such a 
perfect mechanism exists for all differential equations, 
we focus on a system that can achieve this goal for a 
relatively broad class of problems. 

Specifically, we automate a first order system least 
squares algorithm using triangular B´ezier patches as 
our shape functions.Neither our choice of the 
straightforward least squares algorithm nor our choice 
of B´ezier patches is unique. Nonetheless, we 
combine these pieces in such way that we can 
automate the construction and solution of any 
polynomial differential equation where every function 
can be adequately approximated by a surface 
composed of several B´ezier patches. This includes 
all smooth functions as well as, in a practical sense, 
some discontinuous functions. We do not intend nor 
claim that this system will provide the best possible 
solution in all cases. Simply, it provides a smooth 
solution given relatively little analytical work by the 
user. In this way, we view it as a tool that allows an 
end user to rapidly prototype a problem and then 
determine whether further investigation into an 
alternative algorithm is necessary. 
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The key to this method is the manipulation of surfaces 
composed of Bezier patches. Let us define the /th 
Bernstein polynomial of degree k over the jth simplex 

within the set t as  

 

where „ , and denotes the solution 
y of the (/> + 1) x (/> + 1) linear system 

 

where and  denotes a 

corners of the simplex . Based on these polynomials, 
we form Bezier patches by taking the sum over all 
possible polynomials of degree k. We form a surface 
by summing over all possible simplices. 
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