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Abstract – We study techniques, approximation algorithms, structural properties and lower bounds 
related to applications of linear programs in combinatorial optimization. The following Steiner tree 
problem is central: given a graph with a distinguished subset of required vertices, and costs for each 
edge, find a minimum-cost subgraph that connects the required vertices. We also investigate the areas of 
network design, multicommodity flows, and packing/covering integer programs. All of these problems are 
NP-complete so it is natural to seek approximation algorithms with the best provable approximation ratio. 
Overall, we show some new techniques that enhance the already-substantial corpus of LP-based 
approximation methods, and we also look for limitations of these techniques. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

What is the power of computers? How can 
mathematics help us understand the power of 
computers, and how can computers help us 
understand mathematics? These are the sort of 
theoretical questions that motivate this thesis, at a high 
level; we return to the interplay between computers 
and mathematics later in the introduction. 

The concrete problem which motivates most of this 
thesis is the Steiner tree problem, which is as follows. 
You are given some required vertices (points) and 
some optional vertices, and want to build a graph 
(network) to connect the required vertices. You can 
purchase an edge (direct link) between any two points 
u and v: the cost of this edge, which you are given as 
part of the problem statement, is some dollar value cuv 
that depends on u and v. The Steiner tree problem is 
then, what is the cheapest way to purchase edges so 
that between any two required vertices, there is a path 
of edges? Optional points can be included or excluded 
from the graph as you prefer. 

 

Figure 1: Left: an instance of the Steiner tree problem 
where there are three required vertices in the plane. 
Right: the solution for this instance uses one optional 
point. 

In Figure 1 we give an example of how an optional 
point helps. There are three required points A C in 
the two-dimensional plane, every other point in the 
plane is an optional point, and the cost of connecting 
two points is the same as their distance; so the 
Steiner tree problem asks the shortest total length of 
line segments to connect .4, B, C. This very special 
case was investigated by the classical 
mathematicians Fermat and Torricelli in the mid-
1600s; they found that the optimal network consists 
of three edges AX, BX,CX where the point X 

satisfies (unless this X 
lies outside the triangle ABC, in which case the 
optimal solution is just the two shorter sides of the 
triangle.) We refer the reader to for these historical 
references. 

We now skip forward a few centuries to the 1900s. 
Electronic computers were developed over the 
course of this century and so was a formal 
mathematical model of computation. Computers can 
be programmed to perform a variety of different tasks 
and can do basic mathematical operations much 
faster than a human. The Steiner tree problem has 
applications in industry (for example, the network 
could be for telecommunication, transportation, or 
chip layout) and so one wonders: just how quickly 
can a computer can solve the Steiner tree problem? 
The mainstream notion in theoretical computer 
science is the following abstract mathematical 
expression of speed (i.e. one that is independent of 
whether you use a Mac or a PC): we seek an 
algorithm (abstract computer program) with smallest 
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time complexity (number of basic operations 
performed) as a function of the input size n. 

Another mainstream notion is that a fast running time 
is any running time of the form at most n

D
 for constant 

D, so-called polynomial time complexity. In the 1970s, 
the complexity-theoretic notion of N P-completeness 
was developed by Cook and Levin; then Karp showed 
that Steiner tree is "NP-hard," so a fast algorithm for 
the Steiner tree problem is would imply fast algorithms 
for all "NP-complete'" problems. Moreover, there are 
lots of well-known NP-complete problems and the best 
known algorithms for them have running time like C

n
 

for some constant . Since for large 
enough n, we cannot use any known algorithms solve 
the Steiner tree problem this quickly — there is a 
$1,000,000 conjecture that in fact no such algorithm 
exists. 

It is therefore sensible to look at approximation 
algorithms: find a fast algorithm which outputs some 
valid answer that is nearly optimal, i.e. the output has 
cost within a factor a of the best possible, for some a. 
Such an algorithm is called an a-approximation 
algorithm. 

LINEAR PROGRAMS 

Algorithmic techniques based on linear programs 
(LPs) have driven many modern developments in 
combinatorial optimization problems related to the 
Steiner tree problem. The linear programming 
approach is to relax a discrete problem (in Steiner tree 
there are two discrete choices per connection, 
purchase it or don't purchase it) into a continuous 
variant (we now allow each edge e to be "purchased" 

to any fractional extent ). Then one must 
overcome two inter-related technical challenges: first, 
modeling the problem by linear constraints; second, 
recovering an integral solution from the fractional 
relaxation without increasing the cost too much. 

It has been 10 years since the last improvement to the 
best-known ratio for the Steiner tree problem. 
Moreover, the Steiner tree problem is an example 
where LP methods have not driven innovation: none of 
the long list of approximation algorithms were 
developed by LP methods. The best LP-based result 
known is that an alternative 2-approximation algorithm 
can be obtained using LP technology. Nonetheless, 
the overall breadth and depth of LP methods has 
developed over time, and there is no negative result 
suggesting that LP methods will remain forever 
ineffective in this setting. In addition, LP methods are 
useful in practice for solving large- scale instances of 
the Steiner tree problem, by using integer 
programming software. Therefore, a large part of this 
thesis is devoted to developing and understanding 
modern LP technology for use in the Steiner tree 
problem. We also successfully develop LP-based 
approximation algorithms, with better approximation 

ratios than were previously known, for several other 
problems in combinatorial optimization. 

LP PRELIMINARIES 

While a substantial number of different successful 
techniques are known in the literature on LP methods, 
there is no hard-and-fast rule telling whether a given 
LP is useful or not. Some guidelines are known, 
including small integrality gap and uncrossability. 

The integrality gap V of a linear program is a 
quantitative measure related to the suitability of an LP 
for use in designing approximation algorithms. We 
discuss it for minimization problems here, but 
analogous definitions hold for maximization problems. 
The integrality gap is defined as the worst-case cost 

ratio between the integral optimum cost (i.e., min 

Steiner tree cost) and the fractional optimum (i.e., 
LP optimal value). The proof method of most LP-
based approximation algorithms (e.g. rounding and 
primal-dual) is to find a feasible x and prove 

that , which guarantees an a-

approximation since  

But if the integrality gap satisfies , we also have 

 

and so is impossible. Conversely, 
approximation algorithms of this type, which we will 
call LP-relative approximation algorithms

2
, prove 

that . One reason to demarcate the property of 
being LP-relative is that it is specifically necessary in 
some settings. The notion of an LP-relative 
approximation algorithm is already ubiquitous in the 
literature; but we are not aware of a name for it as 
such. 

Even if an LP has a large integrality gap, one may still 
find it useful in designing an approximation algorithm. 

For example, Carr et al.  gave a -approximation 
algorithm for edge-dominating set using the natural 

LP. They also showed an integrality gap of  for that 
LP, which precluded any better LP-relative ratio for 
that LP. But by strengthening the natural LP with 
additional constraints, two groups obtained another 
LP with integrality gap of 2 and also obtained a 2-
approximation algorithm for the problem. 

STEINER TREE LPS: AN OVERVIEW 

In the Steiner tree problem, we are given an 
undirected graph G = (V, £), non-negative 

costs for all edges , and a set of terminal 

vertices . The goal is to find a minimum-cost 
tree T spanning /?, and possibly some Steiner 
vertices from V \ R. The problem takes a central place 
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in the theory of combinatorial optimization and has 
numerous practical applications. The problem is one of 
original 21 NP-hard problems, and Chlebik and 

Chlebikova show that no (96/95 — )-approximation 
algorithm can exist for any positive e unless P=NP 15]. 
The same authors also show that it is NP-hard to 

obtain an approximation ratio better than for quasi-
bipartite instances of the Steiner tree problem; these 
are instances in which no two Steiner vertices are 
adjacent in the underlying graph G. 

One of the first approximation algorithms for the 
Steiner tree problem is the well-known minimum-
spanning tree heuristic which is widely attributed to 
Moore . Moore's algorithm has a performance ratio of 
2 for the Steiner tree problem and this remained the 
best known until the 1990s, when Zelikovsky 
suggested computing Steiner trees with a special 
structure, so called r-restricted Steiner trees based on 
the full component decomposition. Nearly all of the 
Steiner tree algorithms developed since then use r-
restricted Steiner trees. 

Given a Steiner tree T, a full component of T is a 
maximal subtree of T all of whose leaves are terminals 
and all of whose internal nodes are Steiner nodes. The 
edge set of any Steiner tree can be partitioned in a 
unique way into full components by splitting at internal 
terminals. 

The above observation leads to the following 
hypergraph view of the Steiner tree problem which 
was first made explicit by Warme and Promel and 

Steger. Let be 

 

Figure 2: Black nodes are terminals and white nodes 
are Steiner nodes. Left: a Steiner tree for this instance. 
Middle: the Steiner tree's edges are partitioned into full 
components; there are four full components. Right: the 
hyperedges corresponding to these full components. 

the set of all nonempty subsets of terminals 

(hyperedges). We associate with each  a fixed 
min-cost full component spanning the terminals in K, 

and let be its cost. The problem of finding a 

minimum-cost Steiner tree spanning  now reduces 
to that of finding a minimum-cost hyper-spanning tree 

in the hypergraph . 

The basic terminology for hypergraphs is as follows. A 
hyperedge (called just an edge sometimes) is any 
nonempty subset of the vertex set (usually of size at 

least 2). Vertices are connected if there is a 

sequence of vertices and 
hyperedges in the hypergraph. A connected 
hypergraph is one in which all vertices are connected. 
A simple cycle is a sequence of distinct vertices and 
hyperedges 

with . A 
hyper-spanning tree may then be defined as a 
connected hypergraph with no simple cycles: see the 
right of Figure 2 for an example. 

LP Approaches & Background on MST - 
Development of combinatorial algorithms has been 
paralleled by extensive LP-based research to 
understand the Steiner tree problem. Such a 
polyhedral study often leads to better exact and 
approximate algorithms (although this has not yet 
actually happened in the particular case of Steiner 
trees). There is vast literature on various LP 
relaxations for the Steiner tree problem, e.g. One 
offshoot of better LP relaxations is to achieve vast 
improvements in the area of integer programming-
based exact algorithms for the Steiner tree problem. 

Despite their apparent strength, none of the above LP 
relaxations has been proven to exhibit an integrality 
gap smaller than 2 in general. In particular, the best 
LP-based approximation algorithm for the Steiner 
treeproblem is due to Goemans and Bertsimas, and 

has a performance guarantee of 2 — . This 
algorithm uses the weakest among the Steiner tree 
LP formulations cited above — the undirected cut 
relaxation — whose integrality gap is precisely 2 —

.  

Improved LP-based approximation algorithms have 
so far only been obtained for structured instances of 
the Steiner tree problem. Notably, Chakrabarty, 
Devanur, and Vazi- rani recently showed that the 
bidirected cut relaxation has an integrality gap of at 
most 4/3 for quasi-bipartite instances of the problem, 
improving upon an earlier bound of 3/2. 
(Nonetheless, RZ achieves an approximation ratio 

better than for these graphs.) The worst known 
example is due to Goemans and exhibits an 
integrality gap of only. The bidirected cut relaxation is 
widely conjectured to have an integrality gap smaller 
than 2, but a proof remains elusive. 

LP INTERPRETATIONS 

In this paper we provide algorithmic evidence that the 
primal-dual method is useful for the Steiner tree 
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problem. We first present a novel LP relaxation for the 
Steiner tree problem that generalizes the 

LP presented earlier. We then show that the 
algorithm RZ of Robins and Zelikovsky can be 
analyzed as an iterated primal-dual algorithm using 
this relaxation. 

Robins and Zelikovsky showed that, for every fixed , 

the performance ratio of RZ is in quasi-

bipartite graphs, and in general graphs. We 
prove an interpolation of these results. For a Steiner 

vertex , define its Steiner neighbourhood to be the 
collection of vertices that are in the same connected 

component as in G\R. A graph is b-quasi-bipartite if 
all of its Steiner neighbourhoods have cardinality at 

most b. We prove the following, where denotes the 
optimal cost after r-preprocessing: 

Theorem 1. Given an undirected, b-quasi-bipartite 

graph G = (VyE), terminals , and a fixed 

constant , Algorithm RZ returns a feasible Steiner 
tree T s.t. 

 

Note that fe-quasi-bipartite graphs are a natural 
interpolation between quasi-bipartite graphs (6=1) and 

general graphs , hence Theorem 1 
interpolates the two main results of Robins and 
Zelikovsky. 

Unfortunately, Theorem 1 does not imply that our new 
relaxation has a small integrality gap. Nonetheless, we 
obtain the following bounds, when G is 6-quasi-
bipartite: 

Theorem 2. Our new relaxation has an integrality gap 

between and  We remark that filtering approach 
of Chakrabarty et al. , can be applied to improve the 

gap upper bound to . 

A New LP Relaxation for Steiner Trees - In this 
paper, we work on r-preprocessed graphs as 

introduced— so for example represents element-
disjoint full components, one for every possible set of 

up to terminals. 

We also use a type of metric assumption which holds 
without loss of generality. The standard one is that the 
costs satisfy the triangle inequality and G is a 
complete graph. Here we instead work under a weaker 
metric assumption that is also without loss of 
generality for the purposes of computing optimal 

Steiner trees. The assumption is that, for every 

triple of nodes with a Steiner node such 

that , we have and 

. This preserves the Steiner 
neighbourhoods (unlike the standard metric 
assumption) and has the important property that for 
every K, we may assume that the min-cost full 
component (tree) with leaf set K has degree at least 3 
in all internal (Steiner) nodes. Consequently, for 
example, every r-restricted instance is also (r —2)-
quasi-bipartite. 

 

Figure 3: Left: a collection S = {{t1,t5,t6}, { t3,t4,t7 }, { 
t2,t3}, { t3,t4}} of 4 full    components. Right: a Steiner 

tree with -decomposition ({t1s1, t5s1,t6s1,t2t3}, 
{{t2,t6,t7}, {t4,t7}}). 

Whenever , we will abuse notation and identify 

the symbol with the graph obtained by deleting 
everything except the full components in . For 

example,  denotes the set of all edges of the full 

components in . We will always have , 

therefore the graph always contains the induced 

subgraph  

INTEGRAL MULTICOMMODITY FLOW IN 
TREES 

In the max-weight integral multicommodity flow 
problem (WMF), we are given an undirected supply 
graph G = (V, E), terminal 

pairs where , non- 

negative weights and non-negative 
integral capacities. We distinguish between three 
versions of the problem: in edge-WMF each 

edge has a capacity ; in arc-WMF each of 

the 2\E\ directed arcs with has 

a capacity ; in vertex-WMF each 

vertex has a capacity . The goal is to 

simultaneously route integral  flows of value , 
subject to the capacities, so as to maximize the 

weight . Note that edge-WMF can be reduced 
to vertex-WMF by subdividing each edge, moving that 
edge's capacity onto the new vertex, and setting all 
other vertex capacities to be infinite. When we make 
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statements that apply to all three versions, we simply 
say WMF. 

The single-commodity version (k = 1) of WMF is well-
known to be solvable in polynomial time. If we drop the 
integrality restriction the problem can be solved in 

polynomial time via linear programming for any . 
However, when integrality is required, even the 2- 
commodity unit-capacity, unit-weight arc- and edge-
versions are NP-complete — see Even, Itai, and 

Shamir . Let . Recent results on the edge-
disjoint paths prob lem show more strongly that arc-

WMF isNP-hard to -approximate, and edge-
WMF cannot be approximated better 

than unless i. Random 

ized rounding gives a -approximation algorithm 

for WMF when all capacities are at least , for 

suitably small . 

An easier and significant special case of WMF is 
where the supply graph G is a tree, which we denote 
by WMFT. Garg, Vazirani and Yannakakis  considered 
the unit- weight case of edge-WMFT and showed 
APX-hardness even if G's height is at most 3 and all 
capacities are 1 or 2; but on the positive side, they 
gave a 2-approximate polynomial- time primal-dual 
algorithm. Techniques of Garg et al. show that WMFT 
can be solved in polynomial time when G has unit 
capacity (using dynamic programming and matching) 
or is a star (this problem is essentially equivalent to 6-
matching). The case where G is a path (so-called 
interval packing) is also polynomial-time solvable, e.g. 
by linear programming since the natural LP has a 
totally unimodular constraint matrix. Arc- WMF on unit-

capacity bidirected trees admits -
approximation algorithm. 

In general, the best result for edge- and arc-WMFT is a 
4-approximation of Chekuri, Mydlarz and Shepherd . 
Vertex-WMFT has not been explicitly studied as far as 
we are aware, although we observe later (Proposition 
6.11) that techniques of yield a 5-approximation. 

CONCLUSION 

The first and foremost question would be to improve 
the best known approximation ratio for the Steiner tree 
problem, as well as integrality gaps for the 
hypergraphic and bidirected LPs. After this thesis was 
submitted to its examiners, a preprint of Byrka et al.  
was We noted that the hypergraphic relaxations can 
be solved in polynomial time on r- restricted instances, 
and approximately solved in general, but it is open 
whether we can solve them exactly in general. One of 
our results is that the bidirected and hypergraphic LPs 
have the same value on quasi-bipartite instances.  
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