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Abstract – The differential equations for the coupled vibration of a rotating slender beam under 
aerodynamic couplings including the effect of shear force are obtained. A method based on Rayleigh’s 
quotient is used to obtain the critical speed of the steady flow and the corresponding fundamental 
frequency of vibrations.  

Keyword: Differential Equations, Frequency 

---------------------------♦----------------------------- 
 

1. INTRODUCTION  

These analysis presented in this chapter considers 
vibrations of a slender beam that could represent    a 
turbine blade of simple geometry. The oscillations of a 
beam   whose elastic axis and the line of centre of 
gravity do not coincide are always coupled. The beam 

is attached to a disc of radius 0r and disc rotates with 

angular velocity  .  The beam in allowed to oscillate 

in a plane making an angle  with the plane of 
rotation. 

2. DIFFERENTIAL EQUATION 

Timoshenko beam theory gives the following 
differential eqns for the coupled bending and   
torsional   vibrations of slender beam 
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Where
1

1C
   is the   warping   rigidity? When     =0 

these   above equns. Reduce to two independent ones 
f or the purely torsional and purely bending 
oscillations. If   the centrifugal force effect is to be 
considered   then above governing eqns become  
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When we consider the beam under steady 
aerodynamic force eqns (1) becomes  
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Where L and N are given by  
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The coefficient LC
 and NC

 are lift and moment 
coefficient about the leading edge which are 
expressed   as  
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The eqns (2) when the effect of shear force is taken 
into consideration, reduce to EI 
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And      
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The   equations (3) becomes 
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and      
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Let the motion be harmonic represent able as follows  

    tieAfth  ,
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Where    is real and A, B are complex constants. The 

function f ( ) and  
 

  satisfy the boundary 
conditions of the beam which are as follows 
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3. REVIEW OF LITERATURE 

For an approximate determination of the fundamental 
frequency f is chosen as the shape function for the 
fundamental mode of uncoupled bending vibrations 

and


  as the shape function for the fundamental 
mode of uncoupled torsional vibration in still air of 
cantilever beam of uniform cross section. Let the 
shape functions which satisfy the boundary conditions 
(6) be chosen as  
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Substituting   eqns   (5) in (4), we obtain 
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For the solution of eqns (8), we multiply eqns (8) by f 

and 


  respectively and integrating the result with 

respect to  


  from 0 to 1, we obtain the following 
eqns Fung (5) 
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The determinant of the co-efficient of A and B is 
complex, both the real and imaginary parts must 
vanish. On setting the determinant equal to zero and 
separating the real and imaginary parts, we obtain the 
following  
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Second eqn of (10) gives us  
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The right hand side of eqn (12) is positive. 

Corresponding to the two values of 
2U from  

eqn (12), there are two values of  
2  from eqn (11). 

Usually the smaller 
2U is associated with the   

higher
2  in the eqn. (11). 

Numerical example: 

A numerical example for the coupled vibration of a 
rotating slender beam involving shear  

and   aerodynamics forces just described is presented 
here. Critical speeds and frequencies are computed 
from eqn.  (11) & (12). The physical constants of the 
blade and other constants are given below Biezeno 
and Grammel [1] 

S = 0.14889 in
2
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From eqns   (12) we obtain the critical speeds   
2

1U
 

and   
2

2U
  as  
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Substituting these values in eqn (10) we get the 
fundamental frequency as  
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52
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CONCLUSION: 

The result thus obtained shows that the respective 
speed of the steady flow are the larger of two values 

of speeds   
2U calculated from Eqn (12) i.e. the 

critical speed corresponding to torsional coupled 
vibration of the rotating slender beam under 
aerodynamics couplings. 

The larger of two values of 
2U given by equation (12) 

will provide the smaller value of  
2 , which will be 

the upper bound for the frequency of the fundamental 
mode of vibration.  The smaller of two values of 

2U will provide the larger value of 
2 which will be 

an upper bound for the next higher mode of vibration? 
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