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Abstract – Time-dependent problems that are modeled by initial-boundary value problems for parabolic 
or hyperbolic partial differential equations can be treated with the boundary integral equation method. 
The ideal situation is when the right-hand side in the partial differential equation and the initial conditions 
vanish, the data are given only on the boundary of the domain, the equation has constant coefficients, 
and the domain does not depend on time. 

---------------------------♦----------------------------- 
 

INTRODUCTION 

In this situation, the transformation of the problem to a 
boundary integral equation follows the same well-
known lines as for the case of stationary or time-
harmonic problems modeled by elliptic boundary value 
problems. The same main advantages of the reduction 
to the boundary prevail: Reduction of the dimension by 
one, and reduction of an unbounded exterior domain 
to a bounded boundary.  

There are, however, specific difficulties due to the 
additional time dimension: Apart from the practical 
problems of increased complexity related to the higher 
dimension, there can appear new stability problems. In 
the stationary case, one often has unconditional 
stability for reasonable approximation methods, and 
this stability is closely related to variational 
formulations based on the ellipticity of the underlying 
boundary value problem.  

In the time dependent case, instabilities have been 
observed in practice, but due to the absence of 
ellipticity, the stability analysis is more difficult and 
fewer theoretical results are available. 

Like stationary or time-harmonic problems, transient 
problems can be solved by the boundary integral 
equation method. When the material coefficients are 
constant, a fundamental solution is known and the 
data are given on the boundary, the reduction to the 
boundary provides efficient numerical methods in 
particular for problems posed on unbounded domains.  

Such methods are widely and successfully being used 
for numerically modeling problems in heat conduction 
and diffusion, in the propagation and scattering of 

acoustic, electromagnetic and elastic waves, and in 
fluid dynamics. One can distinguish three approaches 
to the application of boundary integral methods on 
parabolic and hyperbolic initial-boundary value 
problems: Space-time integral equations, Laplace-
transform methods, and time-stepping methods. 

Analysis of variational methods exists for the main 
domains of application of space-time boundary 
integral equations: First of all for the scalar wave 
equation, where the boundary integrals are given by 
retarded potentials, but also for elastodynamics 
(Becache, 1993; Becache and Ha-Duong, 1994; 
Chudinovich, 1993c; Chudinovich, 1993b; 
Chudinovich, 1993a), piezoelectricity (Khutoryansky 
and Sosa, 1995), and for electrodynamics (Bachelot 
and Lange, 1995; Bachelot et al., 2001; Rynne, 1999; 
Chudinovich, 1997).  

An extensive review of results on variational methods 
for the retarded potential integral equations is given 
by HaDuong (2003). As in the parabolic case, 
collocation methods are practically important for the 
hyperbolic spacetime integral equations. For the 
retarded potential integral equation, the stability and 
convergence of collocation methods has now been 
established (Davies, 1994; Davies, 1998; Davies and 
Duncan, 1997; Davies and Duncan, 2003). Finally, let 
us mention that there have also been important 
developments in the field of fast methods for space-
time boundary integral equations (Michielssen, 1998; 
Jiao et al., 2002; Michielssen et al., 2000; Greengard 
and Strain, 1990; Greengard and Lin, 2000). 

For the description of the general principles, we 
consider only the simplest model problem of each 
type. We also assume that the right hand sides have 
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the right structure for the application of a “pure” 
boundary integral method: The volume sources and 
the initial conditions vanish, so that the whole system 
is driven by boundary sources. 

 

The derivation of boundary integral equations follows 
from a general method that is valid (under suitable 
smoothness hypotheses on the data) in the same way 
for all 3 types of problems. In fact, what counts for (P) 
and (H) is the property that the lateral boundary Σ is 
non-characteristic. The first ingredient for a BEM is a 
fundamental solution G. As an example, in 3 
dimensions we have, respectively 

 

Representation formulas for a solution u of the 

homogeneous partial differential equation and x 6∈ Γ 
are obtained from Green‟s formula, applied with 
respect to the space variables in the interior and 
exterior domain. We assume that u is smooth in the 
interior and the exterior up to the boundary, but has a 
jump across the boundary.  

REVIEW OF LITERATURE 

This objective reality consisted in tracing the radius 
vectors with light signals. Hence, in despite their 
strong appearance of mathematical tricks, the 
manipulations were not tricks at all. The derivation of 
the Lorentz transformation was correct.  

Second, he “did not seem to be reasoning at all”. He 
discarded the concepts of absolute rest and absolute 
motion but described in detail a thought experiment 
which seems to be the only one enabling the ‟blind‟ 
inertial observers to determine absolute speeds in their 
reference frames. He proposed the experiment for 

deducing the Lorentz transformation in the idea that 
identical inertial clocks would run at rates depending 
on their speed. But, because he did not realize the role 
plaid by the light signals in this experiment, needed to 
manipulate some equations to this end.  

Unfortunately, he did not investigate further the 
diagram describing the experiment to see that this 
diagram actually validates „abstract‟ coordinate 
systems at absolute rest in his theory. There becomes 
evident that Einstein was not aware that by light 
signals has specified the time changing magnitude and 
direction of the radius vectors of geometrical points 
moving with respect to inertial observers (which should 
lead him to the LT as a complementary time-
dependent coordinate transformation) but he used light 
signals,) the graphical addition of travel times as scalar 
quantities needed be developed in his theory but he 
worked only with light signals tracing abscissas of 
geometrical points and dropped the square of β in his 
equations linear in , according to the graphical 
addition of travel times as scalar quantities, the 
equation assured the independence of the linear 
equations in β (making them a coordinate 
transformation) but he took into account this equation 
in order to obtain the “addition theorem for speeds” 
and the coordinate system at absolute rest plays an 
essential role in his theory but he consecrated a 
version of the light-speed principle that saved his 
theory from the inconsistencies raised by the arbitrary 
removal of the coordinate system at absolute rest.  

It is as if Einstein reconstituted by flashes on the 
derivation of the LT as a complementary time-
dependent coordinate transformation that pre-existed 
in his subconscious. The correctness of all the 
manipulations of equations supports the revealed 
knowledge of the original paper.  

Dirac and der Waerden should obtain genuine 
subquantum information. The application of this 
information (disclosed further in this book to radically 
new technologies (that should happen as early as by 
the 1940‟s) gives the real dimension of the impact 
which the missed and distortedly perceived revealed 
knowledge had (still has) upon the advancement of 
physics, finally upon the progress of the mankind. 

A Second Order Partial Differential Equation is a type 
of second-order partial differential equation, 
describing a wide family of problems in science 
including heat diffusion, ocean acoustic propagation, 
and stock option pricing. These problems, also known 
as evolution problems, describe physical or 
mathematical systems with a time variable, and which 
behave essentially like heat diffusing through a solid. 

A partial differential equation of the form 
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is parabolic if it satisfies the condition 

 

A simple example of a parabolic PDE is the one-
dimensional heat equation, where u(t,x) is the 
temperature at time t and at position x, and k is a 
constant. The symbol ut signifies the partial derivative 
with respect to the time variable t, and similarly uxx is 
the second partial derivative with respect to x. 

Later workers such as Morgan (1952), Hansen (1964), 
Krzywoblocki (1963) and Wecker and Hayes (1960) 
investigated similarity methods by considering the 
governing equations first and only examining the 
boundary and initial conditions as a later step, if at cell. 
Another group of workers developed similarity 
methods by starting with a complete mathematical 
formulation and thus motivated to examine less 
complete (and more general) problems, see for 
example Coles (1962), Abbott and Kline (1960) and 
Gukhman (1965).  

RESEARCH STUDY 

An examination of these earlier works show that the 
initial problem statement as far as assumed 
completeness determined to a large extent the kind of 
mathematical approach employed. The more 
information that was known, the more direct was the 
method developed for finding a similarity solution and 
at the same time, the less general were both the 
methods and the conclusions ( as regards “general 
solutions” ).  

It is not suggested that this dichotomy is necessarily 
bad. The more general techniques, such as group 
theory methods, have produced powerful theorems 
and yield results with a minimum of mathematical 
busy-work. On the other hand, the group theory 
methods are difficult for the average engineer to follow 
because their motivation is mathematical, not physical 
and this has inhibited their wide use. Also, somewhat 
amazingly, the more powerful mathematical 
techniques have been to a degree more restrictive in 
some of their aspects (such as the “class of assumed 
transformation”) than the less elegant methods.  

We implement Reduced Differential Transform Method 

to approximately solve the nonlinear dispersive 𝐾(𝑚, 

𝑛) type equations. This method is an alternative 
approach to overcome the demerit of complex 
calculation of differential transform method, capable of 
reducing the size of calculation and easily overcomes 
the difficulty of the perturbation technique or Adomian 
polynomials. To illustrate the application of this 

method, the two special cases, 𝐾(2, 2) and 𝐾(3, 3) are 
discussed. 

We study the existence of radially symmetric solitary 
waves for a non-linear Schrodinger-Poisson system. In 
contrast to all previous results, we consider the 
presence of a positive potential, of interest in physical 
applications. 

We introduce a new dispersion-velocity particle 
method for approximating solutions of linear and 
nonlinear dispersive equations. This is the first time in 
which particle methods are being used for solving such 
equations.  

We numerically test our new method for a variety of 
linear and nonlinear problems. In particular we are 
interested in nonlinear equations which generate 
structures that have non-smooth fronts. It is 
remarkable to see that our particle method is capable 
of capturing the nonlinear regime of a compacton-
cotnpacton type interaction. 

We introduce a new dispersion-velocity particle 
method for approximating solutions of linear and 
nonlinear dispersive equations. This is the first time in 
which particle methods are being used for solving 
such equations.  

Our method is based on an extension of the diffusion-
velocity method of Degond and Mustieles (SIAM J. 
Sci. Stat. Comput. 11(2), 293 (1990)) to the 
dispersive framework. The main analytical result we 
provide is the short time existence and uniqueness of 
a solution to the resulting dispersion-velocity 
transport equation.  

We numerically test our new method for a variety of 
linear and nonlinear problems. In particular we are 
interested in nonlinear equations which generate 
structures that have non-smooth fronts. Our 
simulations show that this particle method is capable 
of capturing the nonlinear regime of a compacton–
compacton type interaction. 

A partial differential equation (PDE) is called 
dispersive if, when no boundary conditions are 
imposed, its wave solutions spread out in space as 
they evolve in time. As an example 

consider . If we try a simple wave of the 

form , we see that it satisfies the 

equation if and only if . This is called the 
dispersive relation and shows that the frequency is a 
real valued function of the wave number.  

If we denote the phase velocity by we can write 

the solution as and notice that the 
wave travels with velocity k. Thus the wave 
propagates in such a way that large wave numbers 
travel faster than smaller ones. (Trying a wave 
solution of the same form to the heat equation 
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, we obtain that the lj is complexed valued 
and the wave solution decays exponential in time.  

On the other hand the transport equation 

and the one dimensional wave equation 

are traveling waves with constant velocity.) 

If we add nonlinear effects and study , 
we will see that even the existence of solutions over 
small times requires delicate techniques. 

Going back to the linear equation, 

consider . For each fixed k the 
wave solution 

becomes . 
Summing over k (integrating) we obtain the solution to 

our problem  

Since we have that .  

Thus the conservation of the L
2
 norm (mass 

conservation or total probability) and the fact that high 
frequencies travel faster, leads to the conclusion that 
not only the solution will disperse into separate waves 
but that its amplitude will decay over time.  

This is not anymore the case for solutions over 
compact domains. The dispersion is limited and for the 
nonlinear dispersive problems we notice a migration 
from low to high frequencies.  

This fact is captured by zooming more closely in the 
Sobolev norm 

 

and observing that it actually grows over time. To 
analyze further the properties of dispersive PDEs and 
outline some recent developments we start with a 
concrete example. 

However, in the non-relativistic limit regime, i.e. if 

 or the speed of light goes to infinity, the 
analysis and efficient computation of the KG equation 
are mathematically rather complicated issues. 

ANALYSIS AND INTERPRETATION 

A different approach in which particle methods were 
used for approximating solutions of the heat equation 
and related models (such as the Fokker-Planck 
equation and a Boltzmann-like equation: the Kac 
equation), was introduced by Russo (2003). 

In these works, the diffusion of the particles was 
described as a deterministic process in terms of a 

mean motion with a speed equal to the osmotic 
velocity associated with the diffusion process.  

In a following work, the method was shown to be 
successful for approximating solutions to the two-
dimensional Navier-Stokes (NS) equation in an 
unbounded domain. In this setup, the particles were 
convected according to the velocity field while their 
weights evolved according to the diffusion term in the 
vorticity formulation of the NS equations. 

Another deterministic approach for approximating 
solutions of the parabolic equations with particle 
methods was introduced by Degond and Mustieles 
(2000). Their so-called diffusion-velocity method was 
based on defining the convective field associated with 
the heat operator which then allowed the particles to 
convect in a standard way. 

For example, the one-dimensional heat equation 

 is rewritten as  where the 
velocity a(u) is taken as –ux/u. Particles carrying fixed 
masses will be then convicted with speed a(u). The 
convergence properties of the diffusion-velocity 
method were investigated, where short time existence 
and uniqueness of solutions for the resulting diffusion-
velocity transport equation were proved.  

The diffusion velocity method serves as the basic tool 
for the derivation of our particle methods in the 
dispersive world. 

We focus our attention on linear and nonlinear 
dispersive partial differential equations. 

Our model problem in the linear setup is the linear 
Airy equation,  

 

The success of particle methods in approximating the 
oscillatory solutions that develop in this dispersive 
equation, provide us with valuable insight regarding 
the potential embedded in our approach. 

In the nonlinear setup, we focus on equations which 
generate compactly supported solutions with non-
smooth fronts, the prototype being the K( m, n) 
equation, which was introduced by Rosenau and 
Hyman (2003).  

In this equation, a nonlinear dispersion term replaces 
the nonlinear dispersion term in the Korteweg-de 
Vries (KdV) equation, resulting with · 

 

For certain values of m and n, the K(m, n) equation 
has solitary waves which are compactly supported.  
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In particular, the variant K(2, 2), 

 

has a fundamental "compact on" solution of the form 

 

After the first appearance of the compactions, it turned 
out that similar structures emerge as solutions for a 
much larger class of nonlinear PDEs, among which is, 
e.g., 

 

which we consider with m = 2, n = 1 as our non-linear 
model problem. 

In this work, we are mainly interested in developing 
tools for approximating numerically solutions of 
equations which generate non-smooth structures.  

Due to the discontinuity in the derivatives on the fronts 
of these emerging structures, standard numerical 
methods such as finite-differences and pseudo-
spectral methods generate spurious oscillations on the 
fronts.  

Moreover, in cases where a positive solution should 
remain positive in time; the spurious numerical 
oscillations might cause the solution to change sign. In 
this case, one can fall into an ill-posed region of the 
equation, and the numerical solution will cease to 
represent the solution of the equation at hand. 

There have been several attempts in the literature .to 
address the complex numerical issues. For example, 
solutions of the compacton equation, K(2, 2), were 
obtained with finite-difference methods. In (de Frutos 
J., 2005), these finite-difference methods were shown 
to generate instabilities on the discontinuous fronts, 
which were interpreted there as shocks.  

CONCLUSION AND SUGGESTIONS 

The existence theory in ID was given in and the 
analysis in 2D was recently announced in. Another 
interesting problem is the existence and uniqueness of 
the ground states, i.e. the solutions which minimize the 
total energy functional under the normalization 
constraint.  

For the most simple-looking equation, i.e. the SN 
equation without external potential, the existence of a 
unique spherically symmetric ground state in 3D was 

proven by Lieb and in any dimension was given. 

There is no global minimum of the energy functional 
for the repulsive SP equation without external potential 
since the infimum of its energy is always zero. When 
the Slater term is considered and in the absence of 
any external potential, the existence analysis of 
ground states in 3D was given in, and in particular the 
existence of a unique spherically symmetric ground 
state is proven in  for the attractive case. To our 
knowledge, so far the existence analysis of higher 
bound states remains open. 

Along the numerical front, self-consistent solutions of 
the SPS equation are important in the simulations of a 
quantum system. For example, time-independent SP 
equation was solved in for the eigenstates of the 
quantum system, and time-dependent spherically 
symmetric SP equation was considered in and time- 
dependent SN equation was treated in with three 
kinds of symmetry: spherical, axial and translational 
symmetry.  

Most of the previous work applies Crank Nicholson 
time integration and finite difference for space 
discretization. Also, note that in general the ground 
states of the SPS equation will lose the symmetric 
profile due to the external potential and therefore one 
cannot obtain a reduced quasi-ID model as for the 
SN system, by studying which the SN equation was 
extensively investigated in. On the other hand, the 
computation of stationary states and dynamics of the 
NLS equation without Hartree potential has been 
extensively studied. Among the numerical methods 
proposed in the literature, discretizations based on a 
gradient flow with discrete normalization (GFDN) 
show more efficient in finding the ground and excited 
states of NLS modeling the Bose-Einstein 
condensates (BEC).  

For dynamics, a time-splitting pseudospectral 
discretization shows its accuracy and efficiency in 
practice. Such results suggest that we can extend 
these successful tools to the computation of ground 
states and dynamics of the SPS equation. For 
example, similar methods were extended in to treat a 
Gross-Pitaevskii-Poisson type system which is used 
to model dipolar BEC, and a time-splitting approach 
was used in  for computing the dynamics of the SPS 
equation with periodic boundary conditions in all 
space dimensions. However, there still remains an 
issue that how to approximate the Hartree potential 
properly, which definitely affects the overall accuracy 
and efficiency. 
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