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Abstract – We study the existence of radially symmetric solitary waves for a non-linear Schrodinger-
Poisson system. In contrast to all previous results, we consider the presence of a positive potential, of 
interest in physical applications. 

We present a new implementation of the two-grid method for computing extremum eigenpairs of self-
adjoint partial differential operators with periodic boundary conditions. A novel two-grid centered 
difference method is proposed for the numerical solutions of the nonlinear Schrödinger–Poisson (SP) 
eigenvalue problem. We solve the Poisson equation to obtain the nonlinear potential for the nonlinear 
Schrödinger eigenvalue problem. 

---------------------------♦----------------------------- 
 

THE SCHR DINGER-POISSON SYSTEM WITH 
POSITIVE POTENTIAL 

In recent years great attention has been paid to some 
classes of systems of partial differential equations in 
which a Schr dinger equation is coupled to the 
Maxwell ones; the purpose is to describe the 

interaction of a nonlinear Schr dinger field with an 
electromagnetic field E — H. The gauge 

potentials , 

 

are related to E — H by the Maxwell equations 

 

If we are interested in finding standing waves 
(solutions of a field equation whose energy travels as 
a localized packet preserving this localization in time) 
and we consider the electrostatic case (when A = 0), 
the Schrodinger field is described by a real function 

, which represents the matter (see or). In this 
way we are led to the following stationary system of 
Schrodinger- Maxwell, or Schrodinger-Poisson-Slater, 
type: 

 (1) 

  (2) 

where and is a given 
potential. In particular, the second equation 
represents the repulsive character of the Coulomb 
force (the attractive case is described by the 

equation ). 

Such a system was studied in  Benci, V., Fortunato, 

D. (1998) with , and the existence of a 

sequence of solutions was proved 
when the problem is settled in a bounded domain 

of After that, in  the potential 

  (3) 

was introduced and existence results in the whole 

physical space were proved for , while 

nonexistence results for or were 
proved in D'Aprile, T., Mugnai, D. (2004), where also 
more general potentials, behaving similarly to the one 
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in (3), were considered. In all these papers a crucial 

assumption is that and .  

ince then a large number of generalizations and 
improvements have been produced; in particular a 
fundamental advance in the understanding of system 
(1)-(2) with W as in (3) was done in Ambrosetti, A., 
Ruiz, D. (2008). But also more general problems, 
where the first equation is replaced by 

 (4) 

for some were studied under 
different assumptions on V and K; moreover, also 
some generalizations of the last cases, with 

replaced by a more generic function 

, were considered. 

By Saanchez, O., Soler, J. (2004) a solution when W is 

as in (3) is found if and ; however, it 
is not known if that solution is radial. The solution is 
found via a minimization argument and appears as a 
Lagrange multiplier. 

Let us remark that the prototype potential defined in 
(3), as well as all the introduced generalizations, is not 
always positive, while for physical reasons a potential 
suitable to model physical phenomena should be 
nonnegative: indeed, the fact that W is nonnegative 
implies that the energy density of a solution (u, $) 
of system (1)—(2) is nonnegative as well. 

Moreover, if we consider the autonomous electrostatic 

case, i.e.  , calling ―rest mass‖ 
of the particle the quantity 

 

the fact that W is positive implies that we are dealing 
with systems of particles having positive mass, which 
is, of course, of interest in physical applications. 

Therefore, in this paper we are interested in system 
(1)—(2) with the main hypothesis that W is assumed 
nonnegative. 

Before passing to the precise assumptions and the 
statement of our results, we recall that systems of this 
type were studied also in bounded domains both under 
Dirichlet or Neumann boundary conditions, and that 
also similar systems were treated with variational 
methods (as we are going to do), mainly by a suitable 
minimization process of the associated energy, or by 
critical point theory. In particular we recall that in all the 
papers cited before, in equation (1) the authors 

assume , while for the case is 

treated in Lieb, E.H., Thomas, L.E. (1997), where 
actually is replaced by 

   (5) 

Such an equation, also called Choquard equation, was 
introduced as an approximation to the Hartree-Foch 
theory for a one component plasma, the author proves 
the existence and uniqueness of a minimizing solution 
for the energy functional associated to a Schroodinger-
Poisson problem, showing that such a minimizing 
solution satisfies a stationary equation of the form (5). 
Moreover, it is proved that such a solution is radially 
decreasing by Schwarz symmetrization methods. See 
also the recent paper, where some powers are 
introduced in the nonlocal part. 

Let us also note that equation (1) generalizes the 
equation 

 

with  introduced in Catto, I., Le Bris, C., Lions, 
P.-L. (2002) to describe a Hartree model for crystals. 
This equation seems to be the first example covered 
by our case, but in the authors were interested in 
periodic periodic structures and did not look for 
solutions with finite global energy, as we are going to 
do. 

Finally, we quote Kikuchi, H. (2007), where the author 
studies the existence and orbital stability of standing 
wave solutions for system (1)—(2) when W is given in 
(3). 

In this paper we are concerned with system (1)—(2). 

In all the papers just cited above in which , 
the potential W always has the form of a pure power 

for some ; hence, in order to 
include the previous cases, in this paper we make the 
following assumptions: 

W1) is such that the derivative 

 is a Caratheodory function, 

for  and for every 

and for  

W2) and  such 

that  for every  

and  W3)  such 

that  for every  

and a.e.  

Remark 1. As it will be clear from the proof, the 
requirement that W depends radially on the space 
variable is a technical assumption which lets us 
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reduce the problem to a radial setting. Of course, if W 
is independent of x, the pure power case is included in 
our setting and the requirement is obviously satisfied. 

From Wi ) we get in particular that is an 

absolute minimum point for W for , and 
that the system always admits the trivial solution 

. Moreover, we remark that, by W2) the 
potential W is more than quadratic both at 0 and 
infinity. Let us also note that by direct integration of 

W3) we obtain that there exist such that 

 for every  and  
so that W may have superquadratic growth at infinity, 
which is in agreement with W2). On the other hand, in 

W3) we exclude the case , since in this latter 

case we would obtain that is decreasing 

if  so that  for , 

and passing to the limit as , by W1 ) we would 

get so that , as it was already 
considered in the literature. 

Remark 2. Note that our assumptions cover the 

case , but even the more intriguing case in 

which for x belonging to a proper subset 

of . An interesting case is when is a ball, so 
that the potential W is active only in an exterior 

domain, or when is an annulus. All these situations 
have not been considered up to now, since also in the 
generalizations mentioned above the coefficients V 

and K in (4) were assumed to be strictly positive in . 
To our best knowledge, this paper is the first one to 
cover the case of potentials possibly vanishing 
somewhere. 

As usual, for physical reasons, we look for solutions 

that have finite energy, i.e.  where 

 is the usual Sobolev space endowed 
with the scalar product  

 

and norm , and  is 

the completion of  with respect to the norm 

 induced by the scalar product 

 

Before stating our main result, let us note that 

if in (1), then  in (2), and if , then 

also . Therefore, we can say that a solution 

of system (1)—(2) is nontrivial if 

both and are different from the trivial function, 
and a sufficient condition for this occurrence is 

that . 

Our first result is the following easy one. 

Proposition 1. Assume that W satisfies Wi) — W3). 

Then for any  there exist and
 nontrivial radial functions 

 which solve the related 
system (1) —(2). 

Analogously to the previous literature, in which w was 
found as a Lagrange multiplier, got by a minimization 
process on a suitable manifold, here we find the 

value of in this way. However, in our case the 
manifold is different from the usual one used in the 
papers cited above, which adopted similar 
procedures considering the unit sphere in . 
Indeed, we introduce a new manifold which in the end 
turns out to be a good choice. On the other hand, our 

manifold is defined as  so that no 
rearrangement approach can be done to prove radial 
decreasing properties of the solutions, as done in 
Ruiz Arriola, E., Soler, J. (2001), where the 

equality is fundamental. In fact, one 
could proceed as follows: 

1. Prove that  

2. Substitute by its radial decreasing 

rearrangement  (i.e. its Schwartz 
symmetrization); 

3.  Prove that is radially decreasing, so that 
it coincides with its decreasing 

rearrangement . 

Actually the last step is true for any radial 

function since is radial as well and super 
harmonic. However, in this way the 

integral increases by the classical Hardy—Little 
wood inequality 

 

so that a symmetrization process pushes out of the 
manifold under consideration. 
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Let us note that under assumption W3) above, system 

(1)—(2) admits only the trivial solution when , 
independently of its possible symmetry: 

Proposition 2. Assume W3), and 

let  be a solution of system 

(1) —(2) with Then  

Proof. Multiplying  and integrating parts, W3) gives 

 

since . This implies , as claimed. By (2) 

we immediately get  

Thus, if W3) holds, it is natural to look for solutions 

when , as stated in Theorem 1. 

On the other hand, the importance of radial functions, 
and in particular of positive ones, has been widely 
used in open quantum problems, and in addition they 
provide a more friendly functional setting from a 
mathematical point of view. 

On the other hand, from a physical viewpoint, positive 
solutions are the most natural ones, and in fact. Under 
the assumptions of Proposition 1, the solution u of (1) 

is strictly positive in . 

We remark that the fact that is positive is a free 
result, since by direct integration of (2) we get 

  (6) 

so that , as soon as  

Variational techniques can improve the existence 
result above when W satisfies some symmetry 
conditions. In this way we get the two main results of 
this paper, collected in the theorems below. 

Theorem 1. Under the assumptions of Proposition 1, 

let us also assume that for 

and every . Then for every 

there exist infinitely many 

triples  which 
solve the related system (1) —(2). 

The main fact in the previous results is that  is not 
given a priori, but is found as a Lagrange multiplier. 

However, if we let p vary in a smaller set, then can 

be fixed from the very beginning, thus improving the 
result of Proposition 1 in the following way: 

Theorem 2. Assume that W satisfies W1), W2) 

with and W3) with Then for 

any  there exist nontrivial radial 

functions which solve (1)-
(2). 

The fact that in Theorem 2 is not too large lets us 
employ classical variational techniques, such as the 
Mountain Pass Theorem, which could not be applied 
to prove Theorem 1, since the geometric conditions of 

the latter theorem fail if  

EFFICIENT ALGORITHM FOR THE 
SCHRÖDINGER–POISSON EIGENVALUE 
PROBLEM 

In recent years, some numerical methods have been 
proposed for computing the first few eigenpairs of the 
Schrodinger eigenvalue problem. In particular, the 
homotopy continuation method was exploited to solve 
the Schrodinger eigenvalue problem with Dirichlet 
boundary conditions, where various linear potentials 
were numerically tested. However, in the case of 
Dirichlet boundary conditions most of the multiple 
eigenvalues are double. Livne and Brandt design 
linear-complexity multiscale algorithms for computing, 
storing, and manipulating eigenfunctions of the 1D 
periodic Schrodinger eigenvalue problem and other 
related differential operators. Recent research articles 
concerning the computations of interior eigenpairs of 
the Schrodinger equation can be found in. 

Xu and Zhou(1999) developed a two-grid finite 
element discretization scheme for second order linear 

elliptic eigenvalue problems. Let and be the 
uniform meshsizes on the coarse and the fine grids, 

and and be the corresponding exact and 
the approximate eigenpairs on the fine grid, 
respectively. They show 

that  
These estimates mean that one can obtain 

asymptotic optimal errors by taking i. 
Recently the authors developed a two-grid finite 
element discretization scheme for semilinear elliptic 
eigenvalue problems. 

In this paper we modify the two-grid finite element 
scheme in. and propose a new' implementation of the 
two- grid method for computing extremum eigenpairs 
of self-adjoint partial differential operators with 
periodic boundary conditions. The problem can be 
expressed as 

  (7) 
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where is a smooth mapping 

with B is some Banach space, and is 
the real line. For the Schrodinger eigenvalue problem 

 (8) 

where  is a trivial solution, where is 
the linear potential. Therefore, we can treat an 
eigenpair of the operator equation as a solution curve 
branching from the trivial solution curve at the 
eigenvalue. We will combine the ideas of the two-grid 
discretization scheme together with the predictor-
corrector method and develop a new algorithm for 
computing the extremum eigenpairs of the discrete 
Schrodinger eigenvalue problem. 

To start, we discretize the operator equation (7) on the 
coarse grid by the centered difference approximations. 
Then we use the block Lanczos method to compute 
extremum eigenpairs on the coarse grid, which also 
can handle multiple and clustered eigenpairs as well. 
The implementations are inexpensive since the order 
of the coefficient matrix on the coarse grid is relatively 
small compared to the one on the fine grid. An 
alternative is to use the function eig in Matlab to 
compute the first few eigenpairs. The extremum 
eigenpairs we obtained on the coarse grid will be used 
as predicted model of extremely small devices in 
semiconductor nanostructures where the quantum 
structure has to be taken into account. We also use 
the block Lanczos method to compute the first few, 
say k eigenpairs on the coarse grid. Then we consider 
the nonlinear Schrodinger eigenvalue problem as a 
parameter-dependent problem 

 (9) 

where denotes the effect of the nonlinear 
potential V. We choose an initial step size ao with 

  for the continuation method, and 
solve the Poisson equation to obtain V for (9). Then 
we go back to (9) and use the block Lanczos method 

to find the first eigenpairs. This process is repeated 

until is reached. 

In addition, the eigenpairs are updated until they 
converge. We also use the eigenpairs obtained on the 
coarse grid as initial guesses for computing their 
counterparts on the line grid. Moreover, the RQI is also 
exploited to improve the accuracy of the approximate 
eigenpairs. Our method can be easily modified to 
compute numerical solutions of the Schrodinger-
Poisson-Slater (SPS) system. Numerical study of the 
SP system can be found. 

The analysis is based on the performance of the 
proposed method with the linear eigenvalue problem 
as the test problem, where the discrete eigenpairs are 
available. Moreover, we also discuss the group actions 
on the basis functions of the eigenspace in the 
presence of symmetry. Our numerical results show 
that the convergence rate of eigenvalue computations 
on the fine grid is O(h

3
). Moreover, one RQI makes the 

first few eigenvalues of the linear eigenvalue problem 
correct at least up to eleven decimal digits. In this 
Section we derive a two-grid centered difference 
method for computing the first few eigenpairs of the 
Schrodinger-Poisson eigenvalue problem (ESP). Our 
numerical results show that: (i) a cluster of 
eigenvalues can be computed completely on the fine 
grid, (ii) separation of eigenvectors on the coarse grid 
is preserved on the fine grid, (iii) eigenvalues in 
different clusters can be treated simultaneously. Our 
numerical results show how the first few eigenpairs of 
the Schrodinger eigenvalue problem are affected by 
the dopant which is considered in the SP system. 

A two-grid discretization method- 

Bifurcation from multiple and clustered eigenvalues - 
Let B be a Banach space of smooth functions 

endowed with some norm, and the set of all real 
numbers. We treat the Schrodinger eigenvalue 
problem as a parameter-dependent operator equation 
of the following form 

 (10) 

where is a smooth mapping 

with , , or 3, and/is a function of 
spatial variables which is properly chosen so that the 

operator is self-adjoint. Here I denotes 
the identity operator on B. 

We may impose Dirichlet or periodic boundary 

conditions on  Choosing periodic boundary 
conditions will increase the multiplicity of eigenvalues. 
Besides, it is consistent with the real situation in 
quantum physics. Both boundary conditions were 
imposed on (10) in our numerical experiments. But 
our numerical reports are mainly concerned with on 
the latter. 

It is well known if the spectrum of the coefficient 
matrix A is simple, then the Gauss-Newton method 
and its many improved modifications can be applied 

for solving . However, the Gauss-Newton 
method converges only to one zero at a time if it 
converges. Li and his collaborators studied homotopy 
continuation methods for computing eigenpairs of 
large sparse eigenproblems. where the coefficient 
matrix can be symmetric or nonsymmetric. Lui and 
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Golub also studied homotopy method for (10). The 
two-grid method we propose here can compute both 
multiple and clustered eigenvalues. Moreover, a 
cluster of eigenvalues on the fine grid can be 
computed completely, and eigenvalues in different 
clusters can be treated simultaneously. 

Note that is a trivial solution of (10) for 

all Moreover, is an eigenpair of (10) if 

and only if x , , Thus,  is a 
bifurcation point on the trivial solution 

curve  The bifurcation diagram of (10) is 
similar to that. One may use the predictor-corrector 
continuation method described to trace the first few 
numerical solution branches of (10) bifurcating at 
eigenvalues, including multiple and clustered 
eigenvalues. However, our aim here is computing 
extremum eigenpairs of the discrete Schrodinger 
eigenvalue problem rather than tracing its solution 
curves, which are of little interest because they are 
lines that are perpendicular to the trivial solution curve. 

Derivation of the algorithm - Let  and 

 be chosen so that , 

where and N are positive integers. Suppose that (10) 
is discretized by the centered difference 

approximations with uniform meshsizes. Let  and 

 be the discrete operators corresponding to (10) on 

the coarse grid and tine grid respectively. 
Without loss of generality, we consider periodic 
boundary conditions. Since our purpose is to compute 
extremum eigenpairs of the discrete Schrodinger 
eigenvalue problem, it is more realistic to consider the 
discrete operators associated with (10). namely, 

 (11) 

and 

 (12) 

Both (11) and (12) are nonlinear systems of equations, 

where

 and  are the coefficient 

matrices corresponding to the Laplace operator on 

the coarse and fine grids, and   and 

 are diagonal matrices whose diagonal 
entries are the values off at each coarse and fine grid 
points, respectively. We will discuss how the extremum 
eigenpairs, including both multiple and clustered 
eigenpairs on the fine grid, can be approximated by 
their counterparts on the coarse grid. 

The matrix eigenvalue problem corresponding to (11) 
on the coarse grid can be expressed as 

  (13) 

where  Note that the coefficient matrix 

 in (13) is symmetric positive definite. We apply the 
block Lanczos method to compute, say. the first k 

eigenpairs of (13). which are denoted by . 
Alternatively, one can also use the function eig in 
Matlab to compute eigenpairs on the coarse grid.  

Theorem 3. Let and assume 

that can be used as an initial guess in 
Newton's method for approximating the zero 

point of on the fine grid. Then the 

eigenvector on the fine grid is obtained by solving 

  (14) 

where is an interpolation operator yet 
to be specified. 

Proof. Consider the first order Taylor expansion of the 

mapping at . namely, 

 (15) 

Denote the differential of , 

where  and 

. If  is replaced by  
and if we neglect the error term in (9), we get 

 

which implies that 

 

After simple calculations we obtain 

  (16) 

Note that the vector in (16) must be treated as a 
vector on the fine grid. Eq. (16) shows that we can get 

an approximate eigenvector corresponding to the 

exact eigenvector n/, on by solving (14). 
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We chose as the linear interpolation in our 
numerical experiments. The process we described 
above belongs to the class of one-step linearization 
methods, which actually is the Newton method. 
Theorem 3 shows that performing the first Newton 
iteration on the fine grid is equivalent to solving (14) 
there. 

Suppose that we already obtained the first k 

approximate eigenpairs on the coarse grid . To 
compute the corresponding approximate eigenpairs on 
the fine grid, we propose to use the CG method to 
solve (14), namely, k SPD linear systems only a few 
iterations. For consistence with the RQI solver, we also 
use MINRES to solve (14). Our main concern here is 
that the fine grid solutions only serve as starting initial 

guesses for the RQI. Clearly, if is an approximate 
eigenvector on the fine grid, the Rayleigh quotient 

of is a reasonable choice for the corresponding 

eigenvalue  To obtain the fine grid approximate 

eigenvalue , we compute the Rayleigh quotient 

 

On the other hand, if is an approximate eigenvalue 
on the fine grid, then from the inverse power method 

one sees that thesolution to will be 
a good approximate eigenvector. Combining these 

two ideas together, we use as an initial guess, 
and perform the RQI on the fine grid. In Parlett has 
shown that the RQI converges globally and that the 
rate of convergence is ultimately cubic. Thus, 
performing RQI on the fine grid will efficiently improve 
the accuracy of the computed eigenpairs. Since the 
condition number of the coefficient matrix increases as 
the approximate eigenvalue approaches the exact 
one. we exploit the technique described in  which we 
briefly describe as follows: 

Suppose that is an eigenpair of a symmetric 

matrix A. and  is an approximation to  
Instead of solving 

   (17) 

we solve a rank-one modification of the coefficient 

matrix  

 

Then we have 

 

Thus the solution of (11) is . Our 
numerical results show that the technique can be 
used to handle both simple and multiple eigenvalues. 
Based on the results, we used the MINRES 1211 to 
solve linear systems in the RQI. 

In summary, the procedure we described above for 
computing the extremum eigenpairs of (10) can be 
regarded as a predictor-corrector method. In the 
predictor step, we compute the extremum eigenpairs 
of the discrete operator equation on the coarse grid, 
which are used as initial guesses for computing the 
counterparts on the fine grid. In the corrector step, we 
solve (14) and perform the RQI. There is no 
continuation because the solution curves go straight. 

CONCLUSION 

The existence of positive solutions to Schrodinger–

Poisson type systems in with critically growing 
nonlocal term is proved by using variational method 
which does not require usual compactness 
conditions. 

We present an efficient algorithm, for computing the 
extremum eigenpairs of the Schrödinger eigenvalue 
problem. The convergence rate of eigenvalue 
computations on the fine grid is O(h

3
). Moreover, one 

RQI  makes the first few approximate eigenvalues of 
the linear eigenvalue problem correct up to eleven 
decimal digits. 
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