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Abstract – A mathematical model is an exclusion law. A mathematical model expresses the opinion that 
some things can happen, are possible, while others cannot, are declared impossible. The problem of 
regulation is to design mechanisms that keep convinced to be forbidden variables at stable values 
against outside fighting that act on the plant that is being regulated, or changes in its properties. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

In studying control systems the reader must be able to 
model dynamic systems in mathematical terms and 
analyze their dynamic characteristics. A mathematical 
model of a dynamic system is defined as a set of 
equations that represents the dynamics of the system 
accurately, or at least fairly well. Note that a 
mathematical model is not unique to a given system. A 
system may be represented in many different ways 
and, therefore, may have many mathematical models, 
depending on one’s perspective. 

The dynamics of many systems, whether they are 
mechanical, electrical, thermal, economic, biological, 
and so on, may be described in terms of differential 
equations. Such differential equations may be 
obtained by using physical laws governing a particular 
system—for example, Newton’s laws for mechanical 
systems and Kirchhoff’s laws for electrical systems.We 
must always keep in mind that deriving reasonable 
mathematical models is the most important part of the 
entire analysis of control systems. 

Throughout this book we assume that the principle of 
causality applies to the systems considered.This 
means that the current output of the system (the 
output at time t=0) depends on the past input (the input 
for t<0) but does not depend on the future input (the 
input for t>0). 

Mathematical models may assume many different 
forms. Depending on the particular system and the 
particular circumstances, one mathematical model 
may be better suited than other models. For example, 
in optimal control problems, it is advantageous to use 
state-space representations. On the other hand, for 
the transient-response or frequency-response analysis 
of single-input, single-output, linear, time-invariant 
systems, the transfer-function representation may be 
more convenient than any other. Once a mathematical 

model of a system is obtained, various analytical and 
computer tools can be used for analysis and 
synthesis purposes. 

In obtaining a mathematical model, we must make a 
compromise between the simplicity of the model and 
the accuracy of the results of the analysis. In deriving 
a reasonably simplified mathematical model, we 
frequently find it necessary to ignore certain inherent 
physical properties of the system. In particular, if a 
linear lumped-parameter mathematical model (that is, 
one employing ordinary differential equations) is 
desired, it is always necessary to ignore certain 
nonlinearities and distributed parameters that may be 
present in the physical system. If the effects that 
these ignored properties have on the response are 
small, good agreement will be obtained between the 
results of the analysis of a mathematical model and 
the results of the experimental study of the physical 
system. 

In general, in solving a new problem, it is desirable to 
build a simplified model so that we can get a general 
feeling for the solution.A more complete 
mathematical model may then be built and used for a 
more accurate analysis. 

We must be well aware that a linear lumped-
parameter model, which may be valid in low-
frequency operations, may not be valid at sufficiently 
high frequencies, since the neglected property of 
distributed parameters may become an important 
factor in the dynamic behavior of the system. For 
example, the mass of a spring may be neglected in 
lowfrequency operations, but it becomes an important 
property of the system at high frequencies. (For the 
case where a mathematical model involves 
considerable errors, robust control theory may be 
applied. 
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Control theory has two main roots: regulation and 
trajectory optimization. The first, regulation, is the more 
important and engineering oriented one. The second, 
trajectory optimization, is mathematics based. 
However, as we shall see, these roots have to a large 
extent merged in the second half of the twentieth 
century. The problem of regulation is to design 
mechanisms that keep certain to be controlled 
variables at constant values against external 
disturbances that act on the plant that is being 
regulated, or changes in its properties. The system 
that is being controlled is usually referred to as the 
plant, a passé partout term that can mean a physical 
or a chemical system, for example. It could also be an 
economic or a biological system, but one would not 
use the engineering term ―plant‖ in that case. 
Examples of regulation problems from our immediate 
environment abound. 

Houses are regulated by thermostats so that the inside 
temperature remains constant, notwithstanding 
variations in the outside weather conditions or 
changes in the situation in the house: doors that may 
be open or closed the number of persons present in a 
room, activity in the kitchen, etc. Motors in washing 
machines, in dryers, and in many other household 
appliances are controlled to run at a fixed speed, 
independent of the load. Modern automobiles have 
dozens of devices that regulate various variables. It is, 
in fact, possible to view also the suspension of an 
automobile as a regulatory device that absorbs the 
irregularities of the road so as to improve the comfort 
and safety of the passengers. Regulation is indeed a 
very important aspect of modern technology. For many 
reasons, such as efficiency, quality control, safety, and 
reliability, industrial production processes require 
regulation in order to guarantee that certain key 
variables (temperatures, mixtures, pressures, etc.) are 
kept at appropriate values. Factors that inhibit these 
desired values from being achieved are external 
disturbances, as for example the properties of raw 
materials and loading levels or changes in the 
properties of the plant, for example due to aging of the 
equipment or to failure of some devices. Regulation 
problems also occur in other areas, such as 
economics and biology. 

One of the central concepts in control is feedback. A 
good example of a feedback regulator is a thermostat: 
it senses the room temperature, compares it with the 
set point (the desired temperature), and feeds back 
the result to the boiler, which then starts or shuts off 
depending on whether the temperature is too low or 
too high. 

THE SYSTEMS APPROACH 

The systems approach has beginnings far back in 
history. But as modern systems analysis has 
broadened, it has already begun to be controversial 
and misunderstood. The systems approach has 
quickly attracted overly zealous proponents and, as 
often, misinformed detractors. Substantial 

disagreement exists among the professionals as to 
how useful the approach is for the bigger problems of 
society, or for smaller ones when they are more 
"social" than "technological." This confuses the 
nonprofessional as to what the approach really is. It 
impedes its appropriate application. Some hail it as 
magic, a new all-powerful tool that can demolish any 
tough problem, engineering or human. Of course, 
there are always the doubters, the mentally lazy or 
ignorant who are annoyed with the entry of something 
new. And there are some aerospace engineers who 
have used the systems approach but only for narrow 
problems in their specialized field. They often do not 
realize they must extend their team capabilities 
considerably to handle complex social-engineering 
problems. Some experienced systems engineers go to 
the other extreme, certain the discipline is 
inappropriate for "people" problems. In this viewpoint, 
they are sometimes joined by experts schooled in the 
more unpredictable behavior of man. Some of these 
more socially trained individuals are concerned that 
the systems approach's disciplines cannot be applied 
successfully to the real-life problems of the human 
aspects of our civilization. 

The systems approach will not solve substantial 
problems overnight, nor will it ever solve all of them. 
No matter how broadly skillful is the systems team, 
the approach is no more than a tool. It will never give 
us something for nothing, or point the way to an ideal 
organization of all society, or lead to the planning and 
production of all of the products of society so as to 
satisfy all. It will not change the nature of man. It will 
provide, that is, no miracles. All it can do is help to 
achieve orderly, timely, and rational designs and 
decisions. But this "minimum" is something very 
important. So severe are some of our problems today 
that chaos threatens. The systems approach to the 
analysis and design of anything— from a traffic 
management system to a new city, from a regional 
medical clinic to a full hospital and medical center, 
from an automated fingerprint identification system to 
a fully integrated criminal justice system— will provide 
no facility of infinite capacity. But it will lead us to 
designs and operations that will at least not be 
chaotic. The systems approach, if it is used wisely, is, 
at the least, a cure for chaos. 

SYSTEM DESIGN, A NECESSARY STEP TO 
COMPONENT AVAILABILITY 

The systems approach is flattering vital for still 
another reason. Without a good systems analysis and 
system design as a first step, or at least as a parallel 
effort, it is not easy to understand and specify the 
necessary pieces of the solution. If the parts required 
are not called out, no one will set out to make them 
available. These components, which the systems 
design will bring together into a pleasant-sounding 
ensemble to meet the problem, include many items: 
needed equipment and materiel; people trained in 
specific jobs with spelled-out functions and 
procedures; the right kind of information, stored and 
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flowing, so that the people and the things know what to 
do and where to be to make the whole system 
operate. For example, the need for systems works to 
tell us what mechanism we need. For educational 
system we know that we must greatly enhance 
educational resources and techniques to provide for 
more and better education for more young people, for 
retraining of adults for new jobs, and for growth of the 
abilities of most of us to keep pace with the 
requirements of the society. We particularly need a 
massive rise in educational potency in poverty areas 

Now, to meet these needs, we have reason to 
suppose that technological aids can be very important 
to extend the effort of the human educator much as X -
rays and electrocardiographs and blood tests assist 
the physician. These aids include special films, closed 
circuit TV, electronic language laboratories, computer-
based education and training programs, and other 
equipment for the presenting of educational material, 
the handling of data and information, and for assisting 
the educator and administrator in planning, analysis of 
results, and research. But what specific technological 
devices will accomplish exactly what within what 
educational framework? If computer-based teaching 
machines are to be installed, how are they to be used 
so as to yield real advantages instead of perhaps the 
disadvantage of creating a sort of robot teacher or 
evolving to a simple source of entertainment? To 
answer, we must think such things as the psychology 
and principles of teaching, the choice of what is to be 
taught, and how the results will be measured. The 
actual hardware and software design of some new 
teaching devices may be the easiest part of the 
system manufacturing, once we really see what we 
need. 

MATHEMATICAL MODEL 

A mathematical model is an exclusion law. A 
mathematical model expresses the opinion that some 
things can happen, are possible, while others cannot, 
are declared impossible. Thus Kepler claims that 
planetary orbits that do not satisfy his three famous 
laws are impossible. In particular, he judges no 
elliptical orbits as unphysical. The second law of 
thermodynamics limits the transformation of heat into 
mechanical work. Certain combinations of heat, work, 
and temperature histories are declared to be 
impossible. Economic production functions tell us that 
certain amounts of raw materials, capital, and labor 
are needed in order to manufacture a finished product: 
it prohibits the creation of finished products unless the 
required resources are available. We formalize these 
ideas by stating that a mathematical model selects a 
certain subset from a universe of possibilities. This 
subset consists of the occurrences that the model 
allows, that it declares possible. We call the subset in 
question the behavior of the mathematical model. 

Definition   A mathematical model is a pair (U,B) with 
U a set, called the universe—its elements are called 
outcomes—and B a subset of U, called the behavior. 

Example 1  

Economists believe that there exists a relation 
between the amount P produced of a particular 
economic resource, the capital K invested in the 
necessary infrastructure, and the labor L expended 
towards its production. A typical model looks like U = 

R
3
+ and B = {(P,K,L) ∈R

3
+ | P = F(K,L)}, where F : R

2
+ 

→ R+ is the production function. 

Typically, F : (K,L) 7→ αK
β
L

γ
, with α, β, γ ∈ R+, 0 ≤ β 

≤ 1, 0 ≤ γ ≤ 1, constant parameters depending on the 
production process, for example the type of 
technology used. Before we modeled the situation, 

we were ready to believe that every triple (P,K,L) ∈ 
R

3
+ could occur. After introduction of the production 

function, we limit these possibilities to the triples 
satisfying P = αK

β
L

γ
. The subset of R

3
+ obtained this 

way is the behavior in the example under 
consideration. 

Example 2  

During the ice age, shortly after Prometheus stole fire 
from the gods, man realized that H2O could appear, 
depending on the temperature, as liquid water, 
steam, or ice. It took a while longer before this 
situation was captured in a mathematical model. The 
generally accepted model, with the temperature in 
degrees Celsius, is U ={ice, water, steam}× [−273,∞) 

and B = (({ice}×[−273, 0])∪({water }×[0, 

100])∪({steam}× [100,∞)). 

SYSTEMS DEFINED BY LINEAR 
DIFFERENTIAL EQUATIONS 

A very common class of dynamical systems consists 
of the systems that are: 

• Linear 

• Time-invariant 

• Described by differential (or, in discrete time, 
difference) equations. 

The importance of such dynamical systems stems 
from at least two aspects. First, their prevalence in 
applications, indeed, many models used in science 
and (electrical, mechanical, chemical) engineering 
are by their very nature linear and time-invariant. 
Secondly, the small signal behavior of a nonlinear 
time-invariant dynamical system in the neighborhood 
of an equilibrium point is time-invariant and 
approximately linear. The process of substituting the 
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nonlinear model by the linear one is called 
linearization. 

Linear systems lend themselves much better to 
analysis and synthesis techniques than nonlinear 
systems do. Much more is known about them. As 
such, the theory of linear systems not only plays an 
exemplary role for the nonlinear case, but has also 
reached a much higher degree of perfection. The 
systems under consideration are those described by 
linear constant-coefficient differential equations. 
Dynamical system is determined by its behavior. The 
systems of differential equations that can be 
transformed into each other by premultiplication by a 
unimodular matrix represent the same behavior. 
Conversely, we will investigate the relation between 
representations that define the same behavior. It turns 
out that under a certain condition such differential 
equation representations can be transformed into each 
other by means of premultiplication by a suitable 
unimodular matrix. 

MODELING IN STATE SPACE 

In this section we shall present introductory material 
on state-space analysis of control systems. 

Modern Control Theory - The modern trend in 
engineering systems is toward greater complexity, due 
mainly to the requirements of complex tasks and good 
accuracy. Complex systems may have multiple inputs 
and multiple outputs and may be time varying. 
Because of the necessity of meeting increasingly 
stringent requirements on the performance of control 
systems, the increase in system complexity, and easy 
access to large scale computers, modern control 
theory, which is a new approach to the analysis and 
design of complex control systems, has been 
developed since around 1960.This new approach is 
based on the concept of state. The concept of state by 
itself is not new, since it has been in existence for a 
long time in the field of classical dynamics and other 
fields. 

Modern Control Theory Versus Conventional 
Control Theory - Modern control theory is contrasted 
with conventional control theory in that the former is 
applicable to multiple-input, multiple-output systems, 
which may be linear or nonlinear, time invariant or time 
varying, while the latter is applicable only to linear 
timeinvariant single-input, single-output systems. Also, 
modern control theory is essentially time-domain 
approach and frequency domain approach (in certain 
cases such as H-infinity control), while conventional 
control theory is a complex frequency-domain 
approach. Before we proceed further, we must define 
state, state variables, state vector, and state space. 

State. The state of a dynamic system is the smallest 
set of variables (called state variables) such that 
knowledge of these variables at t=t0 , together with 

knowledge of the input for t  t0 , completely 

determines the behavior of the system for any time t 

 t0 . 

Note that the concept of state is by no means limited 
to physical systems. It is applicable to biological 
systems, economic systems, social systems, and 
others. 

State Variables. The state variables of a dynamic 
system are the variables making up the smallest set of 
variables that determine the state of the dynamic 

system. If at least n variables are
 needed to completely describe the behavior of 
a dynamic system (so that once the input is given for 

t t0 and the initial state at t = to is specified, the 
future state of the system is completely determined), 
then such n variables are a set of state variables. 

Note that state variables need not be physically 
measurable or observable quantities. Variables that 
do not represent physical quantities and those that 
are neither measurable nor observable can be 
chosen as state variables. Such freedom in choosing 
state variables is an advantage of the state-space 
methods. Practically, however, it is convenient to 
choose easily measurable quantities for the state 
variables, if this is possible at all, because optimal 
control laws will require the feedback of all state 
variables with suitable weighting. 

State Vector. If n state variables are needed to 
completely describe the behavior of a given system, 
then these n state variables can be considered the n 
components of a vector x. Such a vector is called a 
state vector. A state vector is thus a vector that deter-
mines uniquely the system state \(t) for any time 

t t0, once the state at t = t0 is given and the input 

u(t) for t t0 is specified. 

State Space. The /t-dimensional space whose 

coordinate axes consist of the  

axis, where are 
state variables, is called a state space. Any state can 
be represented by a point in the state space. 

State-Space Equations. In state-space analysis we 
are concerned with three types of variables that are 
involved in the modeling of dynamic systems: input 
variables, output variables, and state variables. The 
state-space representation for a given system is not 
unique, except that the number of state variables is 
the same for any of the different state-space 
representations of the same system. 

The dynamic system must involve elements that 

memorize the values of the input for t t1. Since 
integrators in a continuous-time control system serve 
as memory devices, the outputs of such integrators 
can be considered as the variables that define the 
internal state of the dynamic system. Thus the 
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outputs of integrators serve as state variables. The 
number of state variables to completely define the 
dynamics of the system is equal to the number of 
integrators involved in the system. 

Assume that a multiple-input, multiple-output system 
involves n integrators. Assume also that there are r 

inputs and m outputs 

 Define n outputs of the integrators 

as state variables: Then the 
system may be described by 

 (1) 

The outputs of the system may be 
given by 

 (2) 

If we define 

 

then Equations (1) and (2) become 

 (3) 

 (4) 

where Equation (3) is the state equation and Equation 
(4) is the output equation. If vector functions f and/or g 

involve time t explicitly, then the system is called a 
time- varying system. 

If Equations (3) and (4) are linearized about the 
operating state, then we have the following linearized 
state equation and output equation: 

 (5) 

 (6) 

where A(t) is called the state matrix, B(t) the input 
matrix, C(t) the output matrix, and D(t) the direct 
transmission matrix.  

 

Figure 1: Block diagram of the linear, continuous 
time control system represented in state space. 

A block diagram representation of Equations (5) and 
(6) is shown in Figure 1. 

If vector functions f and g do not involve time t 
explicitly then the system is called a time-invariant 
system. In this case. Equations (5) and (6) can be 
simplified to 

 (7) 

 (8) 

Equation (7) is the state equation of the linear, time-
invariant system and Equation (8) is the output 
equation for the same system. In this book we shall 
be concerned mostly with systems described by 
Equations (7) and (8). 

In what follows we shall present an example for 
deriving a state equation and output equation. 

CONCLUSION 

The reliability and availability analysis of process 
industries can benefit in terms of higher production, 
lower maintenance costs. The Availability of complex 
systems and continuous process industries can be 
enhanced by considering maintenance, inspection, 
repairs and replacements of the parts of the failed 
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units. A mathematical model expresses the opinion 
that some things can happen, are possible, while 
others cannot, are declared impossible. 
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