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Embeddings 
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Abstract – The subject of the present work arose in a connection with well-known and deeply developed 
problem about almost Euclidean subspaces of normed spaces. This is far from being a complete list of 
the publications about the subject. As a rule, a normed space does not contain Euclidean subspaces of 
dimensions greater than one. However, the famous Dvoretzky theorem states the existence of almost 
Euclidean subspaces of all normed spaces of sufficiently big dimensions. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

The presence of an Euclidean subspace of a 
dimension m>=2, an Euclidean plane does exist as 
well. In the latter case, the unit sphere of the given 
space contains a circle. The spheres of such a kind 
arise in a natural way rarely. For example, one can 
prove that the real space may contain an Euclidean 
subspace in the only case of even p while there is an 
example of 2-dimensional Euclidean plane in the real 
space. An example of Euclidean plane in the real 
space was presented. A proof of existence of m-
dimensional Euclidean subspace of the real space for 
sufficiently being n depending on m and p, n >=NR 
(m,p), was outlined in the same work . Such an 
approach also yields an upper bound for NR(m,p). 
Note that the Euclidean subspaces in lnp are just the 
images of isometric embeddings lm2 -> lnp. Later on 
we prefer to speak about the embeddings. 

EXAMPLE 1: The identity 

 

Shows that mapping 

 

Is an isometric embedding l22 -> l 34. 

EXAMPLE 2: The Lucas Identity 

 

Defines an embedding l42 -> l 124. 

In such a way , one can to interpret a whole series of 
another classical identities. 

EXAMPLE 3: The Identity 

 

Defines an isometric embedding. Moreover, in this 
case n is the minimal possible for given p, so that 
NR(2,p) = (p/2+1) 

In the independent works , an equivalence between 
isometric embeddings of real spaces lm2 -> l n 
cubature formulas on the unit sphere Sm-1 C lm2 
was established and some lower bounds for NR (m,p) 
were obtained on this base. In addition, a group orbits 
method for constructing of isometric embeddings was
 developed. For cubature formulas such a 
method comes back to Ditkin and Ljusternik and 
Sobolev and was widely applied in order to construct 
cubature formulas equal weights. The concept of 
spherical designs was introduced, the paper of 
Delsarte, Goethals and Seidel containing a series of 
important examples and fundamentals bounds. The 
problem of existence of spherical designs was in 
general open. Some further constructions were done. 
The theory of general cubature formulas was initiated 
by Radon and continued by Stroud and Mysovskikh. 
Now it is developed subject. 

LITERATURE REVIEW 

Jacobi Polynomials 

Let us start with a preliminary information . First of all, 
we recall that the classical Jacobi Polynomial is the k-
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th member of the sequence of polynomials which are 
orthogonal on [-1,1] with respect to the Jacobi weight 

 

Or, equivalently, to the normalized Jacobi weight 

 

An explicit expression for Jacobi Polynomial is 

 

Obviously, 

 

And 

 

In particular, the polynomials are even for even k and 
for odd for odd k. The latter polynomials are in the 
essence the Gegenbauer polynomials. More precisely, 
the Gegenbauer polynomial is defined as 

 

So that 

 

In addition, 

 

With a fixed v the Gegenbauer polynomials are 
orthogonal on [-1,1] with respect to weight . We 
especially need in the Gegenbauer polynomials with v 
. They are orthogonal with respect to the weight 

 

Or, equivalent, to 

 

Where 

 

The Cristoffel-Darboux kernel which relates to the 
Jacobi polynomials is 

 

According to the Cristoffel – Darboux Formula 

 

An important particular case is 

 

Whence 

 

In fact, we need to calculate the quantity 

 

RESEARCH METHODOLOGY 

Polynomial Functions 

E is supposed to be a m-dimensional right linear 
Euclidean space over the field K = R or COMPUTER, 
or H. We will deal with complex-valued polynomial 
functions on the real unit sphere S(E) and the 
projective space P(E). 

Polynomial Functions on the real unit spheres 

The unit sphere S(E) is a real algebric manifold. 
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In spirit of Algebric Geometry, we define a polynomial 
function as a restriction to S(E) of a polynomial 

Given a basis in E, the general form of polynomials on 
E is 

 

Where I runs over a finite set of multiindices are the 
corresponding monomes with respect to the 
coordinates. 

 

Deg is the maximal value of the |I|. This number is 
independent of the choice of basis since for given 
coefficients are uniquely determined. At least one of 
them is different from zero. The set P(E) of all 
polynomials on E is a linear space with respect to the 
standard linear operations in functional spaces. P(E) is 
a ring so that P(E) is an algebra over C. Hence, the set 
Pol (E) of all polynomial functions on S(E) is also a 
linear space. 

 

There is a lot of polynomials which generate the same 
polynomial functions. The point is that the kernel of the 
homomorphism r is the subspace. 

 

Note that a definite lifting does exist if the polynomial is 
homogeneous, 

 

Where d= deg implies, 

 

This formula is known as Homogeneous Lifting. In the 
non – homogeneous case, 

 

By restriction, we get 

 

Then 

 

In this way, we recover the polynomial as soon as all 
homogeneous components are given. In order to 
overcome this difficulty, we have to restrict the space 
P(E) to its subset H(E), 

 

NEED OF STUDY 

Projective Codes, Cubature Formulas and 
Designs 

A Projective Code X is a spherical code such that the 
Projectivization is objective or the points from X are 
protectively distinct. It is convenient for any spherical 
code Y to treat its Projectivization. For a Projective 
Code X its angle set is defined as 

 

THEOREM : Let X be a projective code, | X | = n, | 
a(X) | = s. Then 

 

Proof : Consider the polynomial f, deg f =s, such that 
f|a(X) = 0. Then f(1) != 0. We get 
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DEFINITION : A Projective Cubature Formula of index 
2t is an identity 

 

And 

 

The set suppq is called the support of the projective 
cubature formula. Note that suppq is podal in the real 
case. Actually, a real projective cubature formula of 
index 2t is the same as a podal spherical cubature 
formula of index 2t. 

 

The identity can be rewritten as: 

 

SCOPE OF RESEARCH 

Isometric Embeddings 

The number p must be even integer otherwise such an 
embedding could not exist according to Theorem. We 
start with decomposition. The isometry property in the 
coordinate form is equivalent to 

 

This basis identity can be rewritten as 

 

However, the vectors cannot be normalized. It is 
possible, that there is a pair of proportional non zero 
vectors. Then, 

 

Where 

 

There exists a close relation between isometric 
embeddings and projective cubature formula of index 
p. 

THEOREM : An isometric embedding exists if and only 
if there exists a projective cubature formula of index p. 

Proof : Suppose that an isometric embedding exists. 
We obtain the projective cubature formula of index p 
with the nodes and the weights 

 

Then, we get 

 

THEOREM: There exists a quaternionic projective 
formula of index 10 with 6486480 nodes on S(H). 

COROLLARY : The inequality 

NH(7 , 10) < = 6486480 holds. 

THEOREM : There exist the quaternionic projective 
cubature formulas of index 4 with 

m= 2
2k-2

 + q + 1 , n = 2
2k+2

. 3
4q + 1

. (2
2k-1

), k>=1, q>=0 

or with 

m = 2k+q+2, n=3
q+1

 ((k+1)
2
 + 1 ) 

where 

k is prime power , q>=0 , 2k + q + 2 == 0 (mod 4) 

Invariant Cubature Formulas 

Here, we consider the cubature formulas which are 
invariant with respect to a group action. Let G be a 
finite subgroup of the unitary group U (E). There is a 
natural action of G on S(E), 

X → gx, 

A spherical code is called G – invariant if GX = X. For 
every point, its orbit Gx is the minimal G- invariant 
spherical code containing x. A G-invariant spherical 
code X is called G-homogeneous if it is an orbit , i.e. 
the action is transitive. 

For any spherical code V, the Orbit GV is the minimal 
G-invariant spherical code containing V. 
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A measure q is called G- invariant if gq = q for all g, or, 
in other words , the set supp q is G – invariant . 

DEFINITION: A spherical cubature formula is called G 
– invariant if the measure q is G – invariant. 

Obviously, if a spherical cubature formula is G – 
invariant and its support is G- homogeneous then the 
support is a spherical design. 
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