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Abstract – In the present paper is to understand and compare various numerical methods for solving the 
nonlinear Klein–Gordon (KG) equation. The nonlinear KG equation might be viewed as the most simplest 
form of the charged klein-gordon field. We derive exact analysis about physical problems of the Klein-
Gordon equation and to introduce electromagnetic interactions into the KG equation. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

The Klein-Gordon equation (or Klein-Fock-Gordon 
equation) is a relativistic version of the Schrodinger 
equation, which describes scalar (or pseudoscalar) 
spinless particles. The Klein-Gordon equation was 
actually first found by Schodinger, before he made the 
discovery of the equation that now bears his name. He 
rejected it because he couldn't make it fit the data (the 
equation doesn't take into account the spin of the 
electron); the way he found his equation was by 
making simplification in the Klein-Gordon equation. 
Later, it was revived and it has become commonly 
accepted that Klein-Gordon equation is the appropriate 
model to describe the wave function of the particle that 
is charge-neutral, spinless and relativistic effects can't 
be ignored. 

It has important applications in plasma physics, 
together with Zakharov equation describing the 
interaction of Langmuir wave and the ion acoustic 
wave in a plasma, in astrophysics together with 
Maxwell equation describing a minimally coupled 
charged boson field to a spherically symmetric space 
time , in biophysics together with another Klein-Gordon 
equation describing the long wave limit of a lattice 
model for one-dimensional nonlinear wave processes 
in a bi-layer  and so on. Furthermore, Klein-Gordon 
equation coupled with Schrodinger equation (Klein-
Gordon-Schrodinger equations or KGS) is introduced 
in  and it describes a system of conserved scalar 
nucleons interacting with neutral scalar mesons 
coupled through the Yukawa interaction. As is well 
known, KGS is not exactly integrable, so the numerical 
study on it is very important. 

Derivation of the Klein-Gordon equation-This 
chapter is devoted to derive the Klein-Gordon 
equation. From elementary quantum mechanics , we 
know that the Schrodinger equation for free particle is 

  (1) 

where is the wave function, m is the m|ass of the 

particle, is Planck’s constant, and is the 
momentum operator. 

The Schrodinger equation suffers from not being 
relativistically covariant, meaning that it does not take 
into account Einstein’s special relativity. It is natural 
to try to use the identity from special relativity 

   (2) 

for the energy (c is the speed of light); then, plugging 
into the quantum mechanical momentum operator, 
yields the equation 

 (3) 

This, however, is a cumbersome expression to work 
with because of the square root. In addition, this 
equation, as it stands, is nonlocal. Klein and Gordon 
instead worked with more general square of this 
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equation (the Klein-Gordon equation for a free 
particle), which in covariant notation reads 

  (4) 

where  and  This operator 
(Q

2
) is called as the d’Alember operator. This wave 

equation (4) is called as the Klein-Gordon equation. It 
was in the middle 1920’s by E. Schrodinger, as well as 
by O. Klein and W. Gordon, as a candidate for the 
relativistic analog of the nonrelativistic Schrodinger 
equation for a free particle. 

In order to obtain a dimensionless form of the Klein-
Gordon equation (4), we define the normalized 
variables 

  (5) 

Then plugging (3.5) into (3.4) and omitting all , we 
get the following dimension- less standard Klein-
Gordon equation 

  (6) 

For more general case, we consider the nonlinear 
Klein-Gordon equation 

  (7) 

where  

Numerical methods for the Klein-Gordon equation 
- In this chapter, we review some existing numerical 
methods for the nonlinear Klein- Gordon equation and 
present a new method for it. For simplicity of notation, 
we shall introduce the methods in one spatial 
dimension (d = 1). Generalization to d > 1 is 
straightforward by tensor product grids and the results 
remain valid without modification. For d = 1, the 
problem becomes 

 (8) 

(9) 

(10) 

where represents the linear part 

of and represents the nonlinear part of it. 
As it is known in this Section, the KG equation has the 
properties 

(11) 

 (12) 

(13) 

In some cases, the boundary condition (3.9) may be 
replaced by 

 (14) 

We choose the spatial mesh size  with 

  for M being an even positive integer, 

the time step being and let the grid points 
and the time step be 

 

  (15) 

Let be the approximation of  Existing 
numerical methods - There are several numerical 
methods proposed in the literature for discretizing the 
nonlinear Klein-Gordon equation. We will review 
these numerical schemes for it. The schemes are the 
following  

A). This is the simplest scheme for the nonlinear 
Klein-Gordon equation and has had wide use : 

 (16) 

  (17) 

The initial conditions are discretized as 

(18) 

B). This scheme was proposed by Ablowitz, Kruskal, 
and Laclik : 

(19) 
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 (20) 

The initial conditions are discretized as 

 (21) 

C). This scheme has been studied by Jimenez : 

 (22) 

  (23) 

The initial conditions are discretized as 

(24) 

The existing numerical methods are of second-order 
accuracy in space and second- order accuracy in time. 
Our new method shown in the next section is of 
spectral- order accuracy in space, which is much more 
accurate than them. 

Our new numerical method - We discretize the Klein-
Gordon equation by using a pseudospectral method 
for spatial derivatives, followed by application of a 
Crank-Nicolson/leap-frog method for linear/nonlinear 
terms for time derivative. 

 (25) 

Where  is a constant; a spectral 

differential operator approximation of is defined as 

 (26) 

where the Fourier coefficient of a vector 

with  is defined as 

  (27) 

The initial condition are discretized as 

 (28) 

PHYSICAL PROBLEMS OF THE KLEIN-
GORDON EQUATION 

The Klein-Gordon equation fulfills the laws of special 
relativity, but contains two fundamental problems, 
which have to be taken care of for the equation to be 
physically meaningful. 

The first problem becomes obvious when considering 
the solutions of the different equations. Using the 
ansatz 

 (29) 

with 

  (30) 

One obtains  

 (31) 

  (32) 

from which follows 

  (33) 

This means thai the Klein-Gordon equal ion allows 
negative energies as solul ion. Formally, one can see 
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that the information about the sign is lost. However, all 
solutions have to be considered, and there is the 
problem of the physical interpretation of negative 
energies. 

The second problem with the Klein-Gordon equation is 
less obvious. Il occurs when interpreting the 

function as probability amplitude. Interpretation 

of as probability amplitude is only possible if 

there exists a probability density and a 

current  that fulfill a continuity equation 

  (34) 

which guarantees that no "probability" is lost. 

Since we deal with a covariant equation, we define 

  (35) 

and obtain the covariant form 

 (36) 

Eqs. (34 and (35) correspond in form and content the 
charge conservation in electrodynamics. 

Non-relativistic ally one lias 

 (37) 

and thus one expects in the relat.ivist.ic case also 

bilinear expressions in for and If one defines a 

density according to (37) with the solution (29), it is 
easy to show that, this density does not fulfill a 
continuity equation. This has to be expected 

since has to be a four-vector so that (35) is valid in 
all Lorentz systems. Thus, it is obvious to generalize 
(37) to 

  (38) 

where 

 (39) 

Consider 

 (40) 

If  fulfills the Klein-Gordon equation, the right-hand 
side of (40) vanishes, and the continuity equation (35) 
holds. However, the four-vector defined in (38) 
contains the second problem: 

 (41) 

can be positive or negative, depending on the values 

of and Since the Klein-Gordon equation denotes a 
partial differential equation (2nd order) of hyperbolic 
type, one lias the option to arbitrarily choose the 
functions 

 (42) 

at the starting time (/, = 0), and thus obtain, e.g., 

negative values for  An interpretation of  
as probability density would mean that the theory 
allows negative probabilities. This is the problem of 
the indefinite probability density. 

THE CHARGED KLEIN-GORDON FIELD 

In case of a complex, i.e. charged scalar field, the 

current is given with and a total 
charge 

 (43) 

To examine charged fields in some more detail, we 

decompose into real and imaginary 
components 

 (44) 
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where and are real. If fulfills the 
Klein-Gordon equation, so do the 

components and  

Conversely, the following is true: If two 

fields and separately fulfill a Klein-
Gordon equation with the same 

mass , then the equations can be 
replaced by one equation for a complex field, i.e. 

With 

  (45) 

 (46) 

By interchanging and . we obtain the opposite 

charge. Hence and  chamctmzti opposite 
charges. These studies can. e.g., be applied to the 

pion triplet  

KLEIN-GORDON EQUATION WITH 
INTERACTION 

To introduce electromagnetic interactions into the KG 
equation, we use the socalled 'minimal substitution', 
known from EM 

  (47) 

where is a four-vector potential. Inserting this into 
the KG equation gives 

 (48) 

 (49) 

where the generalized potential U(x) consists of a 
scalar and vector part 

 (50) 

Note that the symmetrized from of the vector terms is 
required in order to maintain the hermicity of the 
interaction. In the most general case, the scalar, S. 

and vector, , parts of the potential can be 
independent interactions. For the electromagnetic 
case they are related by 

  (51) 

Using the 'standard' form of , the KG 
equation can be written as 

 (52) 

Substituting the positive and negative energy 
solutions into (52) gives 

 (53) 

Again, once can use (53) as starting point and use it 
with more general potentials V and A. For example, 

let A = 0 and , i.e. allow only a scalar potential 
V. Then 

(53) gives 

 (54) 

Substituting the relation between 

energy and wave vector and using leads 
to 

 (55) 

which looks like a Schrodinger equation with the 
equivalent energy dependent potential 

  (56) 

Another type of potential to consider is the Lorentz 
scalar, which adds to the mass, since 
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. The KG equation with coupling to 
the scalar potential is 

 (57) 

CONCLUSION 

It should be stated that this work does not deny the 
usage of the KG equation as a phenomenological 
equation. Indeed, by definition, a phenomenological 
equation is evaluated mainly by its usefulness in 
describing a specific set of data. This kind of 
evaluation is of a practical nature and is immune to 
theoretical counter-arguments.  

We discuss the implications of our approach for free 
real scalar fields offering a direct proof of the 
uniqueness of the relativistic ally invariant positive-
definite inner product on the space of real Klein-
Gordon fields.  
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