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Abstract – This study begins with some basic terminology, introducing elementary game theoretic 
notions such as strategy, best reply, Nash equilibrium pairs etc. Players who use strategies which are in 
Nash equilibrium have no incentive to deviate unilaterally. Next, a population viewpoint is introduced. The 
simplest description of such an evolution is based on the replicator equation. The relation between Nash 
equilibria and rest points of the replicator equation are investigated, which leads to a short proof of the 
existence of Nash equilibria. We then study mixed strategies and evolutionarily stable strategies. This 
introductory section continues with a brief discussion of other game dynamics, such as the best reply 
dynamics, and ends with the simplest extension of replicator dynamics to asymmetric games. 

Evolutionary game theory has grown into an active area of research that bridges concepts from biology, 
evolution, non-linear dynamics, and game theory. The mechanisms necessary to conduct an evolutionary 
analysis of games are presented. Relations between evolutionary stable strategies and Nash equilibria 
are considered. Replicator dynamics are developed and applied to three relevant games. The analysis of 
example games is used to illustrate the weaknesses and strengths of the theory. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Is there progress in game theory? Do we know more 
today in this field than the scholars in the decade after 
John von Neumann and Oskar Morgenstern published 
their pioneering Game Theory and Economic Behavior 
in 1944. Or, did we only experience a change in style 
and language over the last fifty years. The hypothesis 
of the following brief history of game theory is that the 
various stages of development are the result of 
different assumptions about the nature of the decision 
makers underlying the alternative game theoretical 
approaches. The following text will not give a historical 
overview which aims for completeness. 

Rather, it will trace the changes in the "image of man" 
implicit in the development of game theory and 
demonstrate some of consequences that follow. 

We will distinguish three major stages in the 
development of game theory. The first one, classical 
game theory, is defined by John von Neumann's and 
Oskar Morgenstern's book. It introduced axioms for the 
concept of the individual rational player. Such a player 
makes consistent decisions in the face of certain and 
uncertain alternatives. But, such a player does not 
necessarily assume that other players also act 

rationally. In contrast, modern game theory is defined 
by the Nash player who is not only rational but 
assumes that all players are rational 

to such a degree that they can coordinate their 
strategies so that a Nash equilibrium prevails. The 
more recent, third stage in the development of game 
theory, new game theory, is defined by the Harsanyi 
player. This player is rational but knows very little 
about the other players, e.g., their payoff functions or 
the way they form beliefs about other players' payoff 
functions or beliefs. This limitation initiated two 
complementary strings of research: the more 
traditional one, based on a rational choice model, is 
characterized by the analysis of interactive 
gedankenexperiments about forming beliefs (i.e., 
epistemic games), while the second string follows an 
evolutionary approach where the agents rest content 
with themselves by imitating the observed successful 
behavior of other agents. The latter can be 
interpreted as the "rational conclusion" of the 
constrained cognitive capacity of the decision maker, 
on the one hand, and the complexity of the decision 
situation, on the other, or seen as the consequence 
suggested by the results of empirical research which 
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challenge the rational choice model and its teleological 
background. 

Evolutionary game theory studies the behavior of large 
populations of agents who repeatedly engage in 
strategic interactions. Changes in behavior in these 
populations are driven either by natural selection via 
differences in birth and death rates, or by the 
application of myopic decision rules by individual 
agents. 

The birth of evolutionary game theory is marked by the 
publication of a series of papers by mathematical 
biologist John Maynard Smith. Maynard Smith adapted 
the methods of traditional game theory, which were 
created to model the behavior of rational economic 
agents, to the context of biological natural selection. 

Towards the end of this period, economists realized 
the value of the evolutionary approach to game theory 
in social science contexts, both as a method of 
providing foundations for the equilibrium concepts of 
traditional game theory, and as a tool for selecting 
among equilibria in games that admit more than one. 
Especially in its early stages, work by economists in 
evolutionary game theory hewed closely to the 
interpretation set out by biologists, with the notion of 
ESS and the replicator dynamic understood as 
modeling natural selection in populations of agents 
genetically programmed to behave in specific ways. 
But it soon became clear that models of essentially the 
same form could be used to study the behavior of 
populations of active decision makers. 

While the majority of work in evolutionary game theory 
has been undertaken by biologists and economists, 
closely related models have been applied to questions 
in a variety of fields, including transportation science, 
computer science, and sociology. Some paradigms 
from evolutionary game theory are close relatives of 
certain models from physics, and so have attracted the 
attention of workers in this field. All told, evolutionary 
game theory provides a common ground for workers 
from a wide range of disciplines. 

CLASSICAL GAME THEORY AND THE 
AUTONOMOUSLY RATIONAL PLAYER 

Game theorists consider the axiomatization of the 
utility function in the case of uncertainty a major 
contribution in von Neumann and Morgenstem (1944). 
It paved the ground for the modeling of rational 
decision-making when a decision maker is faced by 

lotteries. Thereafter a utility function. . which 
satisfies the expected utility hypothesis, i.e. 

  (1) 

is called a von Neiunann-Morgenstem utility function. 
In (1). A and B are events (or alternatives), p is the 
probability' that event A occurs while 1-p is the 

probability of B occuring. Thus is a 
lottery (or prospect). It is a notational convention to 

write if p = 1 and 0. 

Of course, for every alternative X if p = 1. 

The probabilities p can be related to a model of 
relative frequencies and are. in this sense, objective 
and thus represent risk: or they can be subjective (i.e. 
expectations or beliefs) and thus represent 
uncertainty. The classical distinction between risk and 
uncertainty going back to Frank Knight (1921) 
appears, however, to be somewhat outdated today. 
For it does not seem to really matter in the end 
whether we believe in the objectivity of relative 
frequencies as an outcome of a random mechanism, 
or whether we derive our expectations from 
introspection and gedankenexperiments. One way or 
the other, they are all based on beliefs which reflect 
uncertainty and thus are subjective. If we follow this 
view and define rational behavior under uncertainty 
as maximizing expected utility in terms with (1), then 
our approach is Bayesian. 

The utility values which the function assigns to 
events (such as money, cars, or strawberries) are 
called payoffs. Because of (1) we do not have to 
distinguish between payoff and expected payoffs: if 

player i is indifferent between the lottery and 

the sure event C then  i.e.. the 

payoffs are identical. If satisfies (1) then it is well 
defined as utility function of individual i up to a linear 
order-preserving transformation. That is. if 

 and  then  and  

represent identical utility functions: thus defines 
not a function but a family of functions and 
interpersonal comparison of utility is excluded 

because and are not determined. 

The utility function of individual can be linear, 
concave or convex in money - which coincides with 
risk neutrality, risk aversion, and risk affinity in so far 

as money defines the events of a lottery - or can 
be related with money in a less rigid way without 
violating (1). There is. however, ample empirical 
evidence that individual behavior does normally not 
follow a pattern which is consistent with (1). There are 
also strong intuitive arguments which challenge the 
adequacy of individual axioms which underlie the 
theory expressed in (1) such as the so-called Allais 
paradox. Later Nobel Laureate Maurice Allais (1953) 
demonstrated the proposed inconsistency of the 
axioms of the von Neumann Morgenstem utility' 
theory by means of the following example: 

(1)  People are asked whether they prefer 
alternative A or alternative B 
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where 

Alternative A:  100 million for sure 

a chance of 0.1 to win 500 millions  

Alternative B: a chance of 0.89 to win 100 millions 

a chance of 0.01 to win nothing 

(2) People are asked whether they prefer alternative C 
or alternative D 

where 

Alternative C: a chance of 0.11 to win 100 million a 
chance of 0.89 to win nothing 

Alternative D: a chance of 0.1 to win 500 million a 
chance of 0.9 to win nothing 

The money values are probably in "old" French francs. 
The expected values of A. B. C. and D are (measured 
in millions) 100.139.11 and 50, respectively. 

Allais argues that for a large number of people, 
especially for those who are averse against taking risk, 
one observes that they prefer A to B and D to C. 
However, von Neumann Morgenstem utility theory 
suggests that if A is preferred B then C is preferred to 
D. In order to see this, we write these preference 
relations in terms of the von Neumann Morgenstem 
utility function of an agent i: 

"A preferred to B" implies: 

 

"C preferred to D" implies: 

 

Both inequalities can be reduced 

to . Tints 

"A preferred to B" implies "C preferred to D". 
Consequently. "D preferred to C" is inconsistent with 
"A preferred to B" and corresponding behavior violates 
the expected utility hypothesis (1). 

There are. however, also strong arguments in favor of 
(1) and the underlying axioms formalized in von 
Neumann and Morgenstem (1944). Firstly. 

there is empirical evidence that people tend to correct 
their behavior if they are aware that it deviates from (1) 
or one of its implications. Secondly, the generalization 
of alternative approaches to decision-making under 
uncertainty (such as the prospect theory of Kahneman 
and Tversky (1979) and the similarity approach of 
Rubinstein (1998)) are also criticized on the basis of 

contradicting empirical results and implausibility of 
underlying assumptions. Moreover, the alternative 
approaches tend to be more complicated than the 
theory behind (1) and therefore more difficult to apply 
to real life decision-making and textbook analysis. This 
is perhaps the main reason why game theorists stick to 
the von Neiunann-Morgenstem utility function when it 
comes to decision-making under uncertainty. The 
maximization of such a utility function defines the 
rational player in game situations, i.e. if the outcome of 
a choice depends on the action of at least two agents 
and the agents, in principle, put themselves into the 
shoes of the other agents when they make their 
decisions because they know of the interdependence 
of decisions. 

There are however many ways to specify this 
knowledge and thus the image which a player has of 
the other player(s). Von Neumann and Morgenstem 
(1944) assumed that a player i does not expect that 
player j is necessarily rational: j's behavior may 
violate the theory embedded in (1) and its 
implications. In their theory of games, they propose 
that players should act rational even under the 
assumption that other players are irrational, i.e. 
inconsistent with (1):"... the rules of rational behavior 
must provide definitely for the possibility of irrational 
conduct on the part of others.... In whatever way we 
formulate the guiding principles and the objective 
justification of' rational behavior.' provision will have 
to be made for every possible conduct of' the others'". 
To characterize this proposition we will speak of 
autonomously rational players in the theory of von 
Neumann and Morgenstem. 

The Minimax Theorem -  

It may come somewhat of a surprise, but von 
Neumann and Morgenstem's theory provides 
convincing results only if we have a situation in which 
there is pure conflict of interest between two players 
and the decision situation can be modeledas a zero-
sum game. For example, if we assume that the payoff 
(bi- )matrix in Figure 1 is specified by the payoff 

values a = . b = , c = , and d = . then it 
describes a zero-sum (two -by-two) game where 

player 1 has the pure strategies and and 

player 2 has the pure strategies and  
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Figure 1: Generalized two -by-two game 

In principle, the definition of utility functions given does 
not allow for interpersonal comparison of utility as 
implied by the zero-sum property. However, if there is 
pure conflict of interest between two players then the 
assumption that a utility gain to player 1 is a utility loss 
to player 2. and vice versa, seems appropriate. Note 
that, if the payoff values of the two players in each cell 
add to the same constant value, then the game is 
equivalent to a zero-sum same and can. without loss 
of information, be transformed into such a same. 

Given a zero-sum game, von Neumann and 
Morgenstem (1944) suggest that each player will 
choose his maximin strategy. Thus player 1 looks for 
the minimum payoff in each line and then earmarks 
the strategy which is related to the highest payoff of 
these (two) minima while player 2 does likewise for his 
payoffs in each column. If the earmarked value of 
player 1 and the earmarked value of player 2 add up to 
zero, then the corresponding strategy pair 
characterizes the solution and the related payoff pair 
describes the outcome. 

If the earmarked values do not add up to zero, then 
player i (i = 1. 2) will randomize on his strategies such 
that the expected value is independent of whether the 
other player chooses his first or second strategy or any 
mixture of these strategies. For instance, if player 1 
chooses his first strategy with probability p and player 
2 chooses his first strategy with probability q. then p 
and q are determined by the two equalities: 

 

Solving these equalities, we get 

and  (2) 

It is easy to show that the (expected) payoff player 1 is 
equal to the negative of the payoff of player 2 if they 
choose their corresponding first strategies with 

probabilities and . This is the essence of the so-
called minimax theorem of von Neumann and 
Morgenstem which says that, given a two-person zero-
sum game, there is always a pair of strategies, either 
in pure or mixed strategies, such that the maximin 
payoff equals the minimax payoff of player 1. Note that 
in two- person zero-sum games the maximin payoff of 

player 2 with respect to his own payoff values is 
identical to the minimax value with respect to the 
payoffs of player 1. (Because the payoffs of player 2 
are the negative values of the payoffs of player 1. it is 
sufficient to specify the payoffs of player 1 only.) 

LIMITATIONS OF CLASSICAL GAME THEORY- 

Baumol (1972. p. 575) summarizes the classical view 
on game theory which derives from the minimax 
theorem: "In game theory, at least in the zero-sum. 
two-person case, there is a major element of 
predictability in the behavior of the second player. He 
is out to do everything he can to oppose the first 
player. If he knows any way to reduce the first player’s 
payoff, he can be counted upon to employ it." 
However, the minimax theorem loses its power if the 
players' interests do not contain pure conflict and the 
zero-sum modeling becomes inappropriate. This is 
particularly the case if strategic coordination problems 
become eminent. For instance, let’s assume that a > 

0. >0. d > 0. >0. and all other payoffs in Figure 1 
are zero. Then the matrix in Figure 1 represents a 
variable-sum game and the minimax theorem does 
not. in general, apply anymore. Assume further, 
player 1 and 2 have to choose their strategies 
simultaneously - or in such a way such that they 
cannot see what the other player has chosen. Then a 
player has to solve the problem of how to coordinate 
his strategy with the strategy of the other player hi 
order to gain positive payoffs. The fact that the theory 
of von Neumann and Morgenstem says little about 
coordination problems, in particular, and variable-sum 
games, in general, concurs with the problem that the 
guiding hand of self-interest becomes weak in 
strategic situations if there is no pure conflict of 
interest and players have difficulties to form 
expectations about the behavior of their fellow 
players. 

It is not surprising that the textbook representation of 
game theory of the 1950s and still in the early 1960s 
focused on the two-person zero-stun game and 
problems of how to calculate the maximin solution if 
players have more than two pure strategies. .An 
exception is the ingenious book by Luce and Raiffa 
(1957) which is still a great source of inspiration for 
game theorists. 

The assumption of a pure conflict of interest seems 
also questionable if there are more than two players. 
If we try to formulate a zero-sum game for three 
players then the problem becomes rather obvious. 
Moreover. 111 the case of more than two players 
there is a potential for coalitions. Von Neumann and 
Morgenstem (1944) developed the concept of the 
characteristic function in order to express the value of 
a coalition. They also suggested a solution concept 
for the case of more than two players which may take 
care of coalition formation: they simply called this 
concept solution, However, neither does its 
application give an answer which coalition will form 
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nor does it determine the payoffs which the individual 
players get in the course of the game. 

It is fair to mention that even more than fifty years later 
the existing theories of coalition formation provide 
answers to these two problems only if the coalition 
games are rather specific and the competing theories 
generally provide divergent answers. However, for the 
case of variable-sum games and games with more 
than two players (if they do not form coalitions) a very 
promising solution concept has been suggested: the 
Nash equilibrium and its refinements. 

NASH EQUILIBRIUM 

Pure-Strategy Nash Equilibrium -  

Rational players think about actions that the other 
players might take. In other words, players form beliefs 
about one another’s behavior. For example, in the BoS 
game, if the man believed the woman would go to the 
ballet, it would be prudent for him to go to the ballet as 
well. Conversely, if he believed that the woman would 
go to the fight, it is probably best if he went to the fight 
as well. So, to maximize his payoff, he would select 
the strategy- that yields the greatest expected payoff 
given his belief. Such a strategy- is called a best 
response (or best reply). 

Definition 1. Suppose player i has some 

belief about the strategies played by the 

other players. Player Vs strategy is a best 
response if  

 

We now define the best response 

correspondence), , as the set of best 

responses player has to It is important to note 
that the best response correspondence is setvalued. 
That is, there may be more than one best response for 
any given belief of player i. If the other players stick 

to then player i can do no better than using any of 

the strategies in the set . In the BoS game, the 

set consists of a single member: and 

. Thus, here the players have a single 
optimal strategy for every belief. In other games, like 

the one in Fig. 2, can contain more than 
one strategy-. 

In this game, , 

and . Also,  

, and . You should get used 
to thinking of the best response correspondence as a 
set of strategies, one for each combination of the other 
players’ strategies. (This is why we enclose the values 

of the correspondence in braces even when there is 
only- one element.) 

 

Figure 2: The Best Response Game. 

We can now use the concept of best responses to 
define Nash equilibrium: a Nash equilibrium is a 
strategy profile such that each player’s strategy is a 
best response to the other players’ strategies: 

Definition 2 (Nash Equilibrium). The strategy 
profile is a pure-strategy Nash equilibrium if, 

and only if, for each player  

An equivalent useful way of defining Nash equilibrium 
is in terms of the payoffs players receive from various 
strategy profiles. 

Definition 3. The strategy profile ( ) is a 
pure-strategy Nash equilibrium if, and only 

if, for each player and 

each  

That is, for every player i and every strategy of that 

player, ( ) is at least as good as the profile 

( ) in which player i chooses st and every other 

player chooses . In a Nash equilibrium, no player i 
has an incentive to choose a different strategy when 
everyone else plays the strategies prescribed by the 
equilibrium. It is quite important to understand that a 
strategy profile is a Nash equilibrium if no player has 
incentive to deviate from his strategy given that the 
other players do not deviate. When examining a 
strategy- for a candidate to be part of a Nash 
equilibrium (strategy- profile), we always hold the 
strategies of all other players constant. 

To understand the definition of Nash equilibrium a 
little better, suppose there is some player i, for whom 

5, is not a best response to . Then, there exists 

some such that . Then this (at 
least one) player has an incentive to deviate from the 
theory’s prediction and these strategies are not Nash 
equilibrium. 

Another important thing to keep in mind: Nash 
equilibrium is a strategy profile. Finding a solution to 
a game involves finding strategy- profiles that meet 
certain rationality requirements. In strict dominance 
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we required that none of the players’ equilibrium 
strategy is strictly dominated. In Nash equilibrium, we 
require that each player’s strategy is a best response 
to the strategies of the other players. 

The Prisoner’s Dilemma. By examining all four 
possible strategy profiles, we see that (D, D) is the 
unique Nash equilibrium (NE). It is NE because (a) 
given that player 2 chooses D, then player 1 can do no 
better than chose D himself (1 >0); and (b) given that 
player 1 chooses D, player 2 can do no better than 
choose D himself. No other strategy profile is NE: 

•  (C, C) is not NE because if player 2 chooses 
C, then player 1 can profitably deviate by- 
choosing D (3 > 2). Although this is enough to 
establish the claim, also note that the profile is 
not NE for another sufficient reason: if player 1 
chooses C, then player 2 can profitably 
deviate by playing D instead. (Note that it is 
enough to show that one player can deviate 
profitably for a profile to be eliminated.) 

•  (C,D) is not NE because if player 2 chooses D, 
then player 1 can get a better payoff by 
choosing D as well. 

•  (D, C) is not NE because if player 1 chooses 
D, then player 2 can get a better payoff by 
choosing D as well. 

Since this exhausts all possible strategy profiles, (D,D) 
is the unique Nash equilibrium of the game. It is no 
coincidence that the Nash equilibrium is the same as 
the strict dominance equilibrium we found before. In 
fact, as you will have to prove in your homework, a 
player will never use a strictly dominated strategy in a 
Nash equilibrium. Further, if a game is dominance 
solvable, then its solution is the unique Nash 
equilibrium. 

How do we use best responses to find Nash 
equilibria? We proceed in two steps: First, we 
determine the best responses of each player, and 
second, we find the strategy profiles wiiere strategies 
are best responses to each other. 

For example, consider again the game in Fig. 2. We 
have already determined the best responses for both 
players, so we only need to find the profiles where 
each is best response to the other. An easy way to do 
this in the bi-matrix is by going through the list of best 
responses and marking the payoffs with a for the 
relevant player where a profile involves a best 
response. Thus, we mark player l’s payoffs in (U,C), 
(U,R), (M,L), and (M,C). We also mark player 2’s 
payoffs in (U,C), (U,R), (M,R), and (D,C). This yields 
the matrix in Fig. 3. 

 

Figure 3: The Best Response Game Marked. 

There are two profiles with stars for both players, (U,C) 
and (U,R), which means these profiles meet the 
requirements for NE. Thus, we conclude this game has 
two pure-strategy Nash equilibria. 

 

Strict Nash Equilibrium- 

Consider the game in Fig. 5. Its story goes like this. 
The setting is the South Pacific in 1943. Admiral 
Kimura has to transport Japanese troops across the 
Bismarck Sea to New Guinea, and Admiral Kenney 
wants to bomb the transports. Kimura must choose 
between a shorter Northern route or a longer 
Southern route, and Kenney must decide where to 
send his planes to look for the transports. If Kenney 
sends the plans to the wrong route, he can recall 
them, but the number of days of bombing is reduced.) 

This game has a unique Nash equilibrium, in which 
both choose the northern route, (N, N). Note, 
however, that if Kenney plays N, then Kimura is 
indifferent between N and S (because the advantage 
of the shorter route is offset by the disadvantage of 
longer bombing raids). Still, the strategy profile (N,N) 
meets the requirements of NE. This equilibrium is not 
strict. 

More generally, an equilibrium is strict if, and only if, 
each player has a unique best response to the other 
players’ strategies: 

Definition 3.4. A strategy profile ( ) is a strict 

Nash equilibrium if for every player , 

for every strategy  The 
difference from the original definition of NE is only in 
the strict inequality sign. 



 

 

Rajkumar Ahuja1* Dr. Vinod Kumar Sharma2 

 

w
w

w
.i

gn
it

e
d

.i
n

 

7 

 

 Journal of Advances in Science and Technology                     
Vol. 10, Issue No. 21, February-2016, ISSN 2230-9659 
 

 

Figure 4: Best Responses in the Modified 
Partnership Game. 

 

Figure 5: The Battle of Bismarck Sea. 

Mixed Strategy Nash Equilibrium- 

The most common example of a game with no Nash 
equilibrium in pure strategies is Matching Pennies, 
which is given in Fig. 6. 

 

Figure 6: Matching Pennies. 

This is a strictly competitive (zero-sum) situation, in 
which the gain for one player is the loss of the other.  
This game has no Nash equilibrium in pure strategies. 
Let’s consider mixed strategies. 

We first extend the idea of best responses to mixed 

strategies: Let denote player i’s best 
response correspondence when the others 

play The definition of Nash equilibrium is 
analogous to the pure-strategy- case: 

Definition 5. A mixed strategy profile is a mixed-

strategy Nash equilibrium if, and only if, . 

As before, a strategy profile is a Nash equilibrium 
whenever all players’ strategies are best responses to 

each other. For a mixed strategy- to be a best 
response, it must put positive probabilities only on 
pure strategies that are best responses. Mixed 
strategy- equilibria, like pure strategy equilibria, never 
use dominated strategies. 

Turning now to Matching Pennies, 

let denote a mixed strategy for player 

1 where he chooses H with probability , and T with 

probability- . Similarly, let denote a 
mixed strategy- for player 2 where she chooses H with 

probability , and T with probability- . We now 
derive the best response correspondence for player 1 
as a function of player 2’s mixed strategy-. 

Player l’s expected payoffs from his pure strategies 
given player 2’s mixed strategy are: 

 

Playing H is a best response if, and only if: 

 

Analogously, T is a best response if, and only 

if, . Thus, player 1 should choose p = 1 if 

 and . Note now- that 

whenever  player 1 is indifferent between his 
two pure strategies: choosing either one yields the 
same expected payoff of 0. Thus, both strategies are 
best responses, which implies that any mixed 
strategy that includes both of them in its support is a 
best response as well. Again, the reason is that if the 
player is getting the same expected payoff from his 
two pure strategies, he will get the same expected 
payoff from any mixed strategy- whose support they 
are. 

Analogous calculations yield the best response 

correspondence for player 2 as a function of . 
Putting these together yields: 

 

The graphical representation of the best response 
correspondences is in Fig. 7. The only place where 
the randomizing strategies are best responses to 
each other is at the intersection point, where each 
player randomizes between the two strategies with 
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probability . Thus, the Matching Pennies game has 

a unique Nash equilibrium in mixed strategies , 

where , and . That is, 

where  

As before, the alternative definition of Nash equilibrium 
is in terms of the payoff functions. We require that no 
player can do better by using any other strategy- than 
the one he uses in the equilibrium mixed strategy 
profile given that all other players stick to their mixed 
strategies. In other words, the player’s expected payoff 
of the MSNE profile is at least as good as the 
expected payoff of using any other strategy. 

Definition 6. A mixed strategy- profile is a mixed-
strategy Nash equilibrium if, for all players i, 

 

 

Figure 7: Best Responses in Matching Pennies. 

Since expected utilities are linear in the probabilities, if 
a player uses a non-degenerate mixed strategy in a 
Nash equilibrium, then he must be indifferent between 
all pure strategies to which he assigns positive 
probability. This is why we only need to check for a 
profitable pure strategy deviation. 

EVOLUTIONARY GAME THEORY 

Evolutionary game theory (EGT) has grown into a field 
that combines the principles of game theory, evolution, 
and dynamical systems to interpret the interactions of 
biological agents. Practitioners in the field have used 
the theory to explain biological phenomena 
successfully, but EGT can also be used to interpret 
classical games from a different perspective. This 
document introduces evolutionary game theory and 
presents an evolutionary approach to the analysis of 
games. 

There are several basic components in the EGT 
analysis of games. Game agents and their strategies 
must be simulated with populations of players, the 
fitness of different strategies relative to the population 

must be computed, and a process to govern the 
evolution of the population must be defined. 

These simple components can be combined to yield 
highly complex solutions. Ideally, under the dynamical 
process the strategies of the populations of players will 
converge to some stable value. Evolutionary game 
theorists often claim the evolutionary solution of the 
game as the true definition of rational play. 

The concept of simulating populations of players to 
determine rational play is not new. A similar idea was 
apparently suggested by Nash in his doctoral thesis. 
The real birth of EGT, though, is likely due to Maynard 
Smith . Work by Cressman  focusses heavily on the 
stability analysis of games. In Weibul  a broader 
treatment of continuous and discrete replicator 
dynamics is given, but with few applications. Recent 
work by Hofbauer and Sigmund provide an excellent 
mathematical treatment of the topic with many 
examples . 

Evolutionary game theory is a different approach to 
the classic analysis of games. Instead of directly 
calculating properties of a game, populations of 
players using different strategies are simulated and a 
process similar to natural selection is used to 
determine how the population evolves. Varying 
degrees of complexity are required to represent 
populations in multi-agent games with differing 
strategy spaces. 

To be exact, consider a ?r-plaver game where 

the player has strategy space denoted by . An 
EGT approach would be to model each agent by a 
population of players. The population for 

the agent would then be partitioned into 

groups (k might be different for each 

population). Individuals in group would all play the 

same (possibly mixed) strategy from . The next step, 
then, would be to randomly play members of the 
populations against each other. The sub-populations 
that performed the best would grow, and those that 
did not perform well would shrink. The process of 
playing members of the populations randomly and 
refining the populations based on performance would 
be repeated indefinitely. Ideally the evolution would 
converge to some stable state for each population, 
which would represent a (possibly mixed) strategy 
best response for each agent. 

A special case is the symmetric two-player game. In a 
symmetric game payoff matrices and actions are 
identical for both agents. These games can be 
modelled by a single population of individuals playing 
against each other. When the game being played is 
asymmetric, a different population of players must be 
used to simulate each agent. 

Throughout this document, the EGT approach will 
make use of the matrix-vector formulation of games. 
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If  are the pure strategies 
available to a player, then that player's strategy will be 

denoted by the column vector  The component 

of gives the probability of playing strategy . 

Playing a pure strategy is represented by the vector 

whose component is 1, and all other components 
are 0. When the payoff for a player is specified by a 

payoff matrix A, a player using strategy against an 

opponent with strategy will have payoff  

There are several critical components to an EGT 
analysis. The natural selection process governing the 
evolution of populations requires a measure of fitness 
for different strategies, and the process itself must be 
carefully chosen. Before a full discussion of the 
evolution process, though, it is necessary to describe 
evolutionary stable strategies. 

THE EVOLUTIONARY DYNAMICS APPROACH 

In this section we will present the second concept to 
analyze a game in evolutionary game theory. The 
general question of that approach is: How will a 
population of individuals that repeatedly plays a certain 
game evolve? The answer to that question is largely 
determined by the conditions under which the 
individuals interact. First we concentrate on a very 
simple setting of an infinitely large population of 
players with two different strategies that randomly 
encounter each other. In order to get not to deep into 
theoretical analyzes we introduce the concept by 
applying it on our running example the Hawk-Dove- 
Game. 

First we have to determine all quantities and their 
relation with each other that are necessary to describe 
the dynamics of the population. Since our population is 
infinitely large it is sufficient to keep track of the 
fractions of individuals that follow a certain strategy. 

With and we denote the fractions of Hawks 
or Doves respectively. To model a real dynamical 
system we have to include some kind of reproduction. 
The reproduction rate should be proportional to fitness 
of an individual, which we denote 

with and respectively, in relation to the mean 

fitness . With these five quantities we can now write 
down the equations that relate the number of 
individuals in the current generation with the number of 
individuals in the next generation: 

   (3) 

  (4) 

This equations are called replicator equations and 
were offered by Taylor and Jonker (1978) and Zeeman 
(1979). The only thing that is missing is an equation 
that describes the fitness of an individual. To derive 
that we use the assumption that the individuals meet 
each other randomly. If we now pick an arbitrary Hawk 

we can conclude that a fraction of of his encounters 
in the current generation were encounters with other 

Hawks, whereas a fraction of  where encounters 
with Doves. If we now use the well-known payoffs, we 
get 

  (5) 

as expression for the fitness of a randomly chosen 
hawk. The same considerations hold for the Doves 
and we can immediately write down the fitness term 

  (6) 

The mean fitness can finally be calculated by 

  (7) 

To get the dynamics of the resulting system one can 
either perform a computer simulation or analyze the 
system analytically. Since our system is quite simple 
we do the latter. 

One of the most common tasks in the analysis of a 
dynamical system is the detection of fixed points. A 
fixed point constitutes a state of the system, were it 
does not change any more. To find these points we 
look at the reproduction equations (3) and (4). Since 

the sum of and is always equal to 1, we can 
concentrate on one of these equations. To find the 

fixed point we make the ansatz 

   (8) 

and easily see the two possibilities: a trivial one 

with and another one when The 

latter implies that either or  Thus 
we have up to 3 fixed points. Fine, but what does that 
mean from a biological point of view? Biologically this 
implies that the population is stable if either one 
species (Hawks or Doves) became extinct or the 
fitness of both is the same. Since we now know the 
fixed points of our system we can check whether they 

are stable or not. It should be obvious that is 

stable iff  and is stable if 
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. To decide in which case one of the 

three situation occurs we look at the equality 
case. Therefore we consider the fitness equations 
(4.3) and (4.4), plug-in the payoff values and equate 
them. 

 (9) 

 (10) 

 (11) 

 (12) 

  (13) 

  (14) 

Finally we derived a clear characterization of our 
system, which we can directly interpret biologically: 
The fitness of the strategy Hawk is always larger than 
or equal to the fitness of the strategy dove (this can be 

seen in equation (11) remembering that ). 
Thus the state were all individuals in a pop ulation 
follow the strategy Hawk is a stable fixed point, 
whereas the state were all individuals follow the 
strategy Dove is always an unstable fixed point. A third 
stable fixed point (coexistence) occurs if the two 
strategies have the same fitness. This happens if the 

frequency of the Hawks equals . Since has to be 
in the range of 0 and 1 this is only possible 

if (the cost of a conflict is higher than the value 
of the resource). Figure 8 summarizes the behavior of 
the dynamical system with help of a bifurcation 
diagram. 

 

Figure 8: Bifurcation diagram for varying conflict 
costs and fixed resource value of the dynamical 

Hawk-Dove-Game system. 

The fact that the strategy Hawk is an ESS and a stable 
fixed point in the setting of a dynamical system is no 
coincidence. De facto the definition of an ESS states 
that the system resists slight perturbations from the 
state were all individuals follow that strategy, which is 
the definition of stable fixed point. 

CONCLUSION 

Game theory is exciting because although the 
principles are simple, the applications are far-reaching. 
Interdependent decisions are everywhere, potentially 
including almost any endeavor in which self-interested 
agents cooperate and/or compete. Probably the most 
interesting games involve communication, because so 
many layers of strategy are possible. Game theory can 
be used to design credible commitments, threats, or 
promises, or to assess propositions and statements 
offered by others. Advanced concepts, such as 
brinkmanship and inflicting costs, can even be found 
at the heart of foreign policy and nuclear weapons 
strategies . some the most important decisions people 
make. 

Evolutionary game theory is a maturing field; many 
basic theoretical issues are well understood, but 
many difficult questions remain. It is tempting to say 
that stochastic and local interaction models offer the 
more open terrain for further explorations. But while it 
is true that we know less about these models than 
about deterministic evolutionary dynamics, even our 
knowledge of the latter is limited: while dynamics on 
one and two dimensional state spaces, and for games 
satisfying a few interesting structural assumptions, 
are well-understood, the dynamics of behavior in the 
vast majority of many-strategy games are not. 
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