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Abstract – Despite increased investment in pharmaceutical research and development, fewer and fewer 
new drugs are entering the marketplace. This has prompted studies in repurposing existing drugs for use 
against diseases with unmet medical needs. A popular approach is to develop a classification model 
based on drugs with and without a desired therapeutic effect. For this approach to be statistically sound, 
it requires a large number of drugs in both classes. However, given few or no approved drugs for the 
diseases of highest medical urgency and interest, different strategies need to be investigated. 

We developed a computational method termed “drug-protein interaction-based repurposing” (DPIR) that 
is potentially applicable to diseases with very few approved drugs. The method, based on genome-wide 
drug-protein interaction information and Bayesian statistics, first identifies drug-protein interactions 
associated with a desired therapeutic effect. Then, it uses key drug-protein interactions to score other 
drugs for their potential to have the same therapeutic effect. 

Detailed cross-validation studies using United States Food and Drug Administration-approved drugs for 
hypertension, human immunodeficiency virus, and malaria indicated that DPIR provides robust 
predictions. It achieves high levels of enrichment of drugs approved for a disease even with models 
developed based on a single drug known to treat the disease. Analysis of our model predictions also 
indicated that the method is potentially useful for understanding molecular mechanisms of drug action 
and for identifying protein targets that may potentiate the desired therapeutic effects of other drugs 
(combination therapies). 

The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities 
for drug discovery and repositioning. Systematic integration of these heterogeneous data not only serves 
as a promising tool for identifying new drug-target interactions (DTIs), which is an important step in drug 
development, but also provides a more complete understanding of the molecular mechanisms of drug 
action. In this work, we integrate diverse drug-related information, including drugs, proteins, diseases 
and side-e_ects., together with their interactions, associations or similarities, to construct a 
heterogeneous network with 12,015 nodes and 1,895,445 edges. We then develop a new computational 
pipeline, called DTINet, to predict novel drug-target interactions from the constructed heterogeneous 
network. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Computational prediction of drug-target interactions 
(DTIs) has become an important step in the drug 
discovery or repositioning process, aiming to identify 
putative new drugs or novel targets for existing drugs. 
Compared to in vivo or biochemical experimental 
methods for identifying new DTIs, which can be 
extremely costly and time-consuming, in silico or 

computational approaches can efficiently identify 
potential DTI candidates for guiding in vivo validation, 
and thus significantly reduce the time and cost 
required for drug discovery or repositioning. 
Traditional computational methods mainly depend on 
two strategies, including the molecular docking-based 
approaches and the ligand-based approaches. 
However, the performance of molecular docking is 
limited when the 3D structures of target proteins are 
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not available, while the ligand-based approaches often 
lead to poor prediction results when a target has only a 
small number of known binding ligands. 

In the past decade, much effort has been devoted to 
developing the machine learning based approaches 
for computational DTI prediction. A key idea behind 
these methods is the \guilt-by-association" 
assumption, that is, similar drugs may share similar 
targets and vice versa. Based on this intuition, the DTI 
prediction problem is often formulated as a binary 
classification task, which aims to predict whether a 
drug-target interaction is present or not. A 
straightforward classification based approach is to 
consider known DTIs as labels and incorporate 
chemical structures of drugs and primary sequences of 
targets as input features (or kernels). Most existing 
prediction methods mainly focus on exploiting 
information from homogeneous networks. For 
example, Bleakley and Yamanishi  applied a support 
vector machine (SVM) framework to predict DTIs 
based on a bipartite local model (BLM). Mei et al. 
extended this framework by combining BLM with a 
neighbor-based interaction-profile inferring (NII) 
procedure (called BLMNII), which is able to learn the 
DTI features from neighbors and predict interactions 
for new drug or target candidates. Xia et al. proposed 
a semi-supervised learning method for DTI prediction, 
called NetLapRLS, which applies Laplacian 
regularized least square and incorporates both 
similarity and interaction kernels into the prediction 
framework. van Laarhoven et al. introduced a 
Gaussian interaction profile (GIP) kernel based 
approach coupled with regularized least square (RLS) 
for DTI prediction. Rather than regarding a drug-target 
interaction as a binary indicator,Wang and Zeng 
proposed a restricted Boltzmann machine (RBM) 
model to predict different types of DTIs (e.g., activation 
and inhibition) on a multidimensional network. 

In addition to chemical and genomic data, previous 
works have incorporated pharmacological or 
phenotypic information, such as side-effect, 
transcriptional response data, drug-disease 
associations, public gene expression data and 
functional data for DTI prediction. Heterogeneous data 
sources provide diverse information and a multi-view 
perspective for predicting novel DTIs. For instance, the 
therapeutic effects of drugs on diseases can generally 
reect their binding activities to the targets (proteins) 
that are related to these diseases and thus can also 
contribute to DTI prediction. Therefore, incorporating 
heterogeneous data sources, e.g., drug-disease 
associations, can potentially boost the accuracy of DTI 
prediction and provide new insights into drug 
repositioning. Despite the current availability of 
heterogeneous data, most existing methods for DTI 
prediction are limited to only homogeneous networks 
or a bipartite DTI models, and cannot be directly 
extended to take into account heterogeneous node or 
topological information and complex relations among 
different data sources. 

Recently, several computational strategies have been 
introduced to integrate heterogeneous data sources to 
predict DTIs. A network-based approach for this 
purpose is to fuse heterogeneous information through 
a network diffusion process, and directly use the 
obtained diffusion distributions to derive the prediction 
scores of DTIs. A meta-path based approach has also 
been proposed to extract the semantic features of 
DTIs from heterogeneous networks. A collaborative 
matrix factorization has been developed to project the 
heterogeneous networks into a common feature 
space, which enables one to use the aforementioned 
homogeneous network based methods to predict new 
DTIs from the resulting single integrated network. 

However, these approaches generally fail to provide 
satisfactory integration paradigms. First, directly using 
the diffusion states as the features or prediction scores 
may easily suffer from the bias induced by the noise 
and high-dimensionality of biological data and thus 
possibly lead to inaccurate DTI predictions. In 
addition, the hand-engineered features, such as 
meta-paths, often require expert knowledge and 
intensive effort in feature engineering, and hence 
prevent the prediction methods from being scaled to 
large-scale datasets. Moreover, collapsing multiple 
individual networks into a single network may cause 
substantial loss of network-specific information, since 
edges from multiple data sources are mixed without 
distinction in such an integrated network. 

The increasing amount of publicly available chemical 
data creates opportunities for the analysis and 
integration of resources of molecular information at 
the interface between biology and chemistry. While 
large-scale data sets have long been publicly 
available in molecular biology, this spirit of openness 
began only recently to spread in chemistry. Funding 
bodies such as the National Institutes of Health (NIH) 
are fostering the creation of public databases, for 
example, PubChem as part of the NIH_s Molecular 
Libraries Roadmap Initiative. In addition, more 
research areas are being considered pre-competitive 
by the pharmaceutical industry. Consequently, we are 
witnessing an increasing number of public databases 
that store information about compounds along with 
properties and context. 

The combined knowledge on individual drugs and 
targets can be advantageously integrated with new 
high-throughput data sets and concepts for systems-
wide analysis of their relations, thus opening a new 
road to predict drug–target relationships and the 
effects of drugs on human biology. Until exhaustive 
screens have been performed that study the effect of 
all human drugs on all human proteins under various 
conditions, computational and systems biology 
approaches will be invaluable in extending our 
knowledge on drug–target relations systematically. 

 



 

 

Rajeev Kumar1* Dr. Alok Mishra2 

 

w
w

w
.i

gn
it

e
d

.i
n

 

3 

 

 Journal of Advances in Science and Technology                     
Vol. 10, Issue No. 21, February-2016, ISSN 2230-9659 
 

BACKGROUND 

By conservative estimates, we know the molecular 
basis of more than 4,000 human diseases, whereas 
treatments are available for only about 250 of them. 
The modern drug discovery paradigm, i.e., starting 
with a disease target and looking for a highly selective 
small molecule that interacts strongly only with the 
intended target, is struggling to meet our medical and 
social requirements. 

Current estimates indicate that it takes an average of 
14 years at a cost of close to $2 billion to bring a new, 
safe, and efficacious drug to market. In the process, 
more than 90% of the drug candidates fail due to 
safety concerns, inadequate bioavailability, or lack of 
efficacy. 

In reality, highly selective compounds are rare. The 
large number of safety and bioavailability issues facing 
candidate drugs, as well as reported side effects of 
marketed drugs, is a reflection of many undocumented 
and deleterious interactions between drugs and 
human targets. In addition, many underlying disease 
causes are multifactorial and can be due to 
dysfunctional processes involving multiple 
biomolecules. Even though significant efforts are 
devoted to understanding the molecular details of drug 
action, the fact is that the mechanisms of action of 
many efficacious drugs are poorly understood and, in 
many cases, remain largely unknown. 

Drug interactions with unintended targets may lead to 
devastating side effects. However, these interactions 
may also signal the possibility for a drug to have 
therapeutic potential for diseases other than those for 
which it was approved. Indeed, there are many 
examples of a drug developed for a specific disease 
that was later approved for treating an unrelated 
disease. One of the most dramatic examples is 
thalidomide, a drug first marketed as an anti-nausea 
and sedative agent prescribed to treat morning 
sickness in pregnant women. Thalidomide was found 
to cause severe birth defects and was withdrawn from 
the market, but it later proved to have other 
therapeutic effects and was approved by the United 
States Food and Drug Administration (FDA) for skin 
lesions caused by leprosy and multiple myeloma. 

In addition, thalidomide has shown promise in treating 
cutaneous lupus and Behcet‟s disease, human 
immunodeficiency virus (HIV)-related mouth and throat 
ulcers, and blood and bone marrow cancers. Although 
the recorded effects of thalidomide are multifaceted, 
with multiple underlying mechanisms possible, 
clarification of a mechanism that distinguishes 
between the teratogenic and anticancer therapeutic 
effects of thalidomide was only recently identified. The 
success of drug repurposing, i.e., finding new uses for 
existing drugs, via serendipitous discoveries inspired 

the development of many computational approaches 
for the discovery of the yet unknown therapeutic 
potentials of existing drugs. 

A common approach used in drug repurposing is to 
build a binary classifier based on a training set 
consisting of drugs with and without a desired 
therapeutic effect as the positive and negative classes, 
respectively. One of the requirements for developing a 
statistically sound classifier is the availability of a 
relatively large number of drugs in the training set. 
Furthermore, it is desirable to have an equal number 
of drugs with and without the desired therapeutic effect 
in the training set so as not to bias classifier training. 
However, when there are many drugs approved for 
treating a disease, the need for discovering more 
drugs for the same disease is less than that for a 
disease for which there is a very limited number of 
drugs or no drugs at all. Thus, there is a need to 
develop computational drug repurposing methods 
that can be applied to diseases for which there are 
very few known pharmacological options. 

CONCEPTS FOR LARGE-SCALE DRUG–
TARGET PREDICTIONS 

Predicting relations based on molecular features 
of chemicals and proteins -  

Exploiting similarities between chemical structures is 
a common way to infer the activity of compounds. 
The most prevalent approach for comparing 
compounds is to convert the two-dimensional 
representation of each compound into a fingerprint 
either by using a defined list of substructures or by 
encoding (hashing) all the encountered substructures 
up to a certain size. This results in fixed-length bit 
vectors for which the Tanimoto (or Jacquard) 
similarity measure is computed by dividing the size of 
intersection of the set bits by the size of the union. 
Alternatively, chemical similarity can be determined 
by aligning three-dimensional models of the 
compounds. To illustrate these similarity measures, 
we show two- and three-dimensional structure 
comparisons of the monoamine oxidase inhibitor 
pargyline with five other compounds. 

Initial optimistic results on the relationship between 
chemical similarity and activity were put into 
perspective by the analysis of more unbiased 
chemical libraries. For these, there is only a 30% 
chance of binding the same compound at the 
similarity level previously thought to warrant >80% 
chance. To overcome the limited predictive power of 
pairwise chemical structure comparison, Keiser and 
co-workers developed a statistical model to detect 
remote, yet significant similarities between groups of 
drugs and used it to predict novel drug–target 
relations. Other groups used Bayesian classifiers to 
correlate the presence or absence of chemical 
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substructures with protein binding properties and 
reported high success rates for known interactions. 
More specialized chemical similarity methods have 
also been developed that take, for example, the 
similarity of target proteins into account. 

Homology relations between proteins can be exploited 
to predict binding of drugs to proteins that are related 
to known drug targets. A study on crystal structures of 
alpha-helical proteins in the PDB showed that the 
chemical similarity between ligands is higher for 
proteins with similar sequences. Here, we generalize 
this to all proteins for which ligand binding constants 
are available from the PDSP Ki database. Using Ki = 
10 lM as the threshold for what is considered 
„„binding‟‟, we quantify the probability that two proteins 
bind the same ligand as a function of their sequence 
similarity separately for four classes of target proteins. 

METHODOLOGY 

Source of large-scale chemical-protein interaction 
Information -  

To create large-scale chemical-protein interaction 
profiles for FDA-approved drugs and drug 
development candidates, we exploited the Search Tool 
for Interactions of Chemicals (STITCH) database. The 
October 2013 release of the database (STITCH 3.1) 
contains chemical-protein interaction information, 
derived from a broad range of sources, between 
300,000 small molecules and 2.6 million proteins from 
1,133 organisms. 

The database provides a confidence measure for each 
chemical-protein interaction calculated by the equation 
score= 1 – Ði(1 – pi), with corrections that take into 
account the possibility of observing an interaction by 
chance. In the equation, pi denotes the confidence of 
interaction from the i-th information source. Based on 
STITCH, a score between 0.40 and 0.70 indicates 
medium confidence, between 0.70 and 0.90 indicates 
high confidence, and between 0.90 and 1.00 indicates 
the highest confidence. 

To retain high-confidence chemical-protein 
interactions, we filtered out entries in STITCH 3.1 with 
confidence scores of <0.70. In addition, we removed 
all entries of chemical interaction with non-human 
proteins. The filtering reduced the total number of 
small molecule-protein interaction entries from >171 
million to just over a half million. The categories of 
chemical-protein interactions with the highest 
occurrence in the database are binding (chemical 
binds to protein), inhibition (chemical inhibits protein 
function), and activation (chemical enhances protein 
function). Because the therapeutic effects of most 
drugs are due to chemical modulation of protein 
function, functional information of chemical-protein 
interactions, i.e., inhibition or activation, is important. 
However, this information is not always available. 
Instead, the most prevalent type of interaction 
information is binding. To create drug-protein 

interaction profiles relevant for drug repurposing, we 
retained interactions of only these three categories. 
This left 445,162 interactions between chemicals 
identified by 232,765 unique STITCH chemical 
identifiers and 6,399 unique human proteins. 

Source of FDA-approved drugs and drug 
development Candidates -  

To generate a list of FDA-approved drugs and drug 
development candidates, we retrieved the SMILES 
strings of all structurally unique small molecule 
compounds in Drug-Bank. Molecular structures 
represented by the SMILES strings were standardized, 
i.e., we stripped salts, standardized charge 
representation, removed stereochemistry labeling, 
removed single atom fragments, neutralized bonded 
zwitterions, and protonated acids/deprotonated bases. 
After structure standardization, we generated 
canonical SMILES and removed duplicates, resulting 
in 4,902 unique entries. They consisted of 1,163 FDA-
approved drugs, 3,630 drug development candidates, 
55 nutraceuticals, and 54 drugs withdrawn from 
market. These molecules are all referred to as “drugs” 
in the remainder of this article. 

Computational prediction of drug-protein 
interactions -  

Most of the compounds in DrugBank are in the 
biological activity screening libraries of 
pharmaceutical companies, government research 
laboratories, and academic institutions. However, not 
all of the Drug Bank compounds have been tested in 
all assays evaluating chemical-protein interactions 
and, hence, the data collected in the STITCH 
database do not cover all drug-protein interactions. 
Thus, to create as complete drug-protein interaction 
profiles as possible, we complemented the drug-
protein interactions contained in the STITCH 
database with predicted drug-protein interactions 
based on chemical structural similarity. This was 
accomplished by re-implementing the similarity 
ensemble approach (SEA) and predicting additional 
drug-protein interactions based on the collection of 
chemical-protein interactions contained in STITCH 
3.1. SEA predictions are based on two-dimensional 
molecular structure similarity as measured by 
Tanimoto coefficients between a drug molecule and 
all known ligands of a protein. When the similarity 
score is high, the probability that the drug interacts 
with the same protein is high. In this study, we 
retained drug-protein interaction predictions with a p-
value cutoff of 0.01, and combined these predictions 
with the high-confidence drug-protein interactions 
contained in the STITCH database. The so-
constructed final set of drugprotein interactions is 
available for non-commercial use (via download at 
http://www.bhsai.org/downloads/drugrepurposing/). 
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RESULTS AND DISCUSSION 

Details of model development and quality assessment 
To assess performance of the drug repurposing 
method described above, we used three model 
development procedures. Type I model development 
represents a conventional machine learning process in 
which a data set is segregated into a training set and a 
testing set. The training set consists of a subset of 
samples of the positive class and a subset of samples 
of the negative class. The remaining samples, 
including both positive and negative samples, are 
grouped into the testing set. The model parameters 
are determined by the training set only. The model is 
then applied to the testing set to assess its ability to 
distinguish the positive from the negative samples. In 
principle, type I models are not suitable for drug 
repurposing applications because most drugs were 
developed for treating a specific disease. Accordingly, 
for most drugs, their ability to treat other diseases has 
not been systematically evaluated and, in most cases, 
one cannot confidently label true negative drugs 
(samples) in the training set. 

A more robust model development approach is 
represented by a type II model, which is trained with a 
subset of the positive drugs as the positive class and 
all other drugs collected in a baseline class, i.e., a 
large set of compounds that may or may not include 
drugs with a desired therapeutic effect. Because all 
drugs are used for model development, there is no 
testing set. However, for drug repurposing, one can 
simply score all the drugs assigned to the baseline 
class with the model and evaluate the degree of 
enrichment of the (known) positive drugs in the 
highest-scored samples. Type II models are more 
appropriate than type I models for drug repurposing, 
based on the premise that there exist drugs with yet 
unknown desirable therapeutic effects for a disease 
among the marketed drugs. 

CONCLUSIONS 

In this article, we described the development of a 
Bayesian statistics-based computational drug 
repurposing method termed DPIR and assessed its 
performance. We demonstrated that the method 
required very few known drugs to build a successful 
predictive model for test cases for which there are 
many approved drugs. We also demonstrated that for 
trauma-induced hemorrhage, for which only one FDA-
approved drug is available, the method gave high 
scores to two drugs approved for unrelated indications, 
but with potential therapeutic effects against 
hemorrhage as supported by literature reports. These 
results indicate that DPIR is potentially applicable to 
diseases with as few as one approved drug, a 
challenging situation for methods based on a binary 
classifier approach. DPIR relies on largescale drug-
protein interaction information. In principle, if one 

knows the molecular mechanisms of a disease and the 
details of drug-protein interactions, one can predict 
whether a drug will have the desired therapeutic effect 
for a specific disease. However, details of molecular 
mechanisms of drug action are not well understood 
and even unknown for many efficacious drugs, 
complicated by the fact that most drugs interact with a 
large number of proteins. Bayesian statistics provide a 
powerful and unbiased approach to identify specific 
drugprotein interactions critical for a desired 
therapeutic effect. 
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