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Abstract – Random configurations of points in space, also known as point processes, have been studied 
in mathematics, statistics and physics for many decades. In mathematics and statistics, the emphasis 
has been on the Poisson process, which can be thought of as a limit of picking points independently and 
uniformly in a large region. 

Taking a different perspective, a finite collection of points in the plane can always be considered as the 
roots of a polynomial; in this coordinate system, taking the coefficients of the polynomial to be 
independent is natural. Limits of these random polynomials and their zeros are a core subject of this 
study; the other class consists of processes with joint intensities of Determinantal form. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

The primary objects of study in this study are point 
processes, which are random variables taking values 
in the space of discrete subsets of a metric space, 
where, by a discrete set we mean a countable set with 
no accumulation points. Precise definitions of relevant 
notions will be given later. Many physical phenomena 
can be modeled by random discrete sets. For 
example, the arrival times of people in a queue, the 
arrangement of stars in a galaxy, energy levels of 
heavy nuclei of atoms etc. This calls upon probability 
to find point processes that can be mathematically 
analysed in some detail, as well as capture various 
qualitative properties of naturally occurring random 
point sets. 

The single most important such process, known as the 
Poisson process has been widely studied and 
applied. The Poisson process is characterized by 
independence of the process when restricted to 
disjoint subsets of the underlying space. More 
precisely, for any collection of mutually disjoint 
measurable subsets of the underlying space, the 
numbers of points of a Poisson process that fall in 
these subsets are stochastically independent. The 
number of points that fall in A has Poisson distribution 

with a certain mean depending on A. Then, it is 

easy to see then that  must be a measure, and it is 
called the intensity measure of the Poisson process. 
This assumption of independence is acceptable in 
some examples, but naturally, not all. For instance if 
one looks at outbreaks of a rare disease in a province, 
then knowing that there is a case in a particular 

location makes it more likely that there are more such 
cases in a neighborhood of that location. On the other 
hand, if one looks at the distribution of like-charged 
particles confined by an external field (physicists call 
it a “one component plasma”), then the opposite is 
true. Knowing that a particular location holds a 
particle makes it unlikely for there to be any others 
close to it. These two examples indicate two ways of 
breaking the independence assumption, inducing 
more clumping (“positively correlated”) as in the first 
example or less clumping (“negatively correlated”) as 
in the second. 

A natural question is, are there probabilistic 
mechanisms to generate such clumping or anti-
clumping behaviour? A simple recipe that gives rise 
to positively correlated point processes is well-known 
to statisticians: First sample . , a continuous 
random function on the underlying space that takes 
values in U+, and then, sample a Poisson process 
whose intensity measure has density with respect 
to a fixed reference measure v on the underlying 
space. These kinds of processes are now called Cox 
processes, and it is clear why they exhibit clumping - 
more points fall where X is large, and if X is large at 
one location in space, it is large in a neighborhood. 
We shall encounter a particular subclass of Cox 
processes, known as permanental processes, one of 
two important classes of point processes having 
negative correlations that we study in this study. 

This brings us to the next natural question and that is 
of central importance to this study. Are there 
interesting point processes that have less clumping 
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than Poisson processes? As we shall see, one natural 
way of getting such a process without putting in the 
anti-clumping property by hand, is to extract zero sets 
of random polynomials or analytic functions, for 
instance, zeros of random polynomials with 
stochastically independent coefficients. On the other 
hand it is also possible to build anti-clumping into the 
very definition. A particularly nice class of such 
processes, known as determinantal point processes, is 
another important object of study in this study. 

We study these point processes only in the plane and 
give some examples on the line, that is, we restrict 
ourselves to random analytic functions in one variable. 

One can get point processes in by considering the 
joint zeros of n random analytic functions on , but we 
do not consider them in this study. Determinantal 
processes have no dimensional barrier, but it should 
be admitted that most of the determinantal processes 
studied have been in one and two dimensions. In 
contrast to Cox processes that we described earlier, 
determinantal point processes seem mathematically 
more interesting to study because, for one, they are 
apparently not just built out of Poisson processes. 

Next we turn to the reason why these processes 
(zeros of random polynomials and determinantal 
processes) have less clustering of points than Poisson 
processes. Determinantal processes have this anti-
clustering or repulsion built into their definition, and 
below we give an explanation as to why zeros of 
random polynomials tend to repel in general. Before 
going into this. All the three samples shown are 
portions of certain translation invariant point processes 
in the plane, with the same average number of points 
per unit area. Nevertheless, they visibly differ from 
each other qualitatively, in terms of the clustering they 
exhibit. 

Now we “explain” the repulsion of points in point 
processes arising from zeros of random analytic 
functions (Of course, any point process in the plane is 
the zero set of a random analytic function, and hence 
one may wonder if we are making an empty or false 
claim. However, when we use the term random 
analytic function, we tacitly mean that we have 
somehow specified the distribution of coefficients and 
that there is a certain amount of independence 
therein). Consider a polynomial 

 (1) 

We let the coefficients be random variables and see 
how the (now random) roots of the polynomial are 
distributed. This is just a matter of change of variables, 
from coefficients to the roots, and the Jacobian 
determinant of this transformation is given by the 
following well known fact. 

LEMMA 1 .Let    have coefficients 
 as in (1.1.1). 

Then the transformation  defined by 

 has Jacobian determinant 

 

PROOF. Note that we are looking for the real Jacobian 
determinant, which is equal to 

 

To see this in the simplest case of one complex 

variable, observe that if  its Jacobian 
determinant is 

 

which is equal to provided is complex analytic. 
See Exercise 1 for the relationship between real and 
complex Jacobian determinants in general. 

Let us write 

 

 and all its partial derivatives are polynomials in 

 Moreover, by the symmetry of  in the it 

follows that if for some  then the  and 

 columns of  are equal, and hence the 
determinant vanishes. Therefore, the polynomial det 

 is divisible by  As the degree of 

 is equal to , it must be 
that 

 

To find the constant , we compute the coefficient of 

the monomial on both sides. On the right hand 
side the coefficient is easily seen to be 

 

On the left, we begin by observing 

that , whence 

  (2) 

The first row in the Jacobian matrix of T has all 
entries equal to -1. Further, the entries in the last 
column (when ) are just , in particular, 

independent of Thus when we expand :>y  

the first row, to get  we must take the entry in the 
first row and in every other row we must use the first 
summand in (2) to get a factor of  Therefore 
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Thus  because  Therefore 

the real Jacobian determinant of T is  

GAUSSIAN ANALYTIC FUNCTIONS 

Complex Gaussian distribution- 

Throughout this study, we shall encounter complex 
Gaussian random variables. As conventions vary, we 
begin by establishing our terminology. By , we 
mean the distribution of the real-valued random 

variable with probability density . Here  and 
 are the mean and variance respectively. 

A standard complex Gaussian is a complex-valued 

random variable with probability density w.r.t the 
Lebesgue measure on the complex plane. Equiva-
lently, one may define it as , where X and Y are 

i.i.d.  random variables. 

Let  be i.i.d. standard complex 

Gaussians. Then we say that is a 
standard complex Gaussian vector. Then if B is a 

(complex)  matrix, is said to be an ra-
dimensional complex Gaussian vector with mean p(an 

m x 1 vector) and covariance (an matrix). 

We denote its distribu tion by  

EXERCISE 2. Let U be an nxn unitary matrix, 

i.e. (here is the conjugate transpose, and a 
an n-dimensional standard complex Gaussian vector. 

Show that is also an n-dimensional standard 
complex Gaussian vector, ii. Show that the mean and 
covariance of a complex Gaussian random vector 
determines its distribution. 

Gaussian analytic functions- 

Endow the space of analytic functions on a region 
 with the topology of uniform convergence on 

compact sets. This makes it a complete separable 
metric space which is the standard setting for doing 

probability theory (To see completeness, if  is a 

Cauchy sequence, then converges uniformly on 

compact sets to some continuous function Then 

Morera’s theorem assures that that must be analytic 
because its contour integral vanishes on any closed 

contour in , since  and the latter vanishes for 

every n by analyticity of ). 

DEFINITION 1. Let f be a random variable on a 
probability space taking values in the space of analytic 
functions on a region We say f is a Gaussian 

analytic function (GAF) on if has a mean 

zero complex Gaussian distribution for every  and 

every  

It is easy to see the following properties of GAFs 

•  are jointly Gaussian, i.e., the joint 
distribution of  and finitely many derivatives 

of  at finitely many points,  
has a (mean zero) complex Gaussian 
distribution. (Hint: Weak limits of Gaussians 
are Gaussians and derivatives are limits of 
difference coefficients). 

• For any and any ,the -
valued random vector  has a 
complex Gaussian distribution with mean 

zero and covariance matrix By 
Exercise 2 it follows that the covariance 
kernel K determines all the finite dimensional 

marginal of  Since  is almost surely 

continuous, it follows that the distribution of  
is determined by K. 

• Analytic extensions of GAFs are GAFs. 

ZEROS OF GAUSSIAN ANALYTIC FUNCTIONS 

Throughout this note we shall use the following 

notation. Let be a plane domain and be 

a system of analytic functions in G. By we 
denote the holomorphic curve in the euclidean 

space with coordinates If , we assume 
that 

  (1) 

where the series on the RHS converges locally 
uniformly in G. 

Let  be independent, complex-valued, gaussian 
random variables such that 

 and  

We identify the probability space with equipped 

with the gaussian product measure  

A gaussian analytic function  is defined as 
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  (2) 

If , then according to a theorem by Khintchin and 
Kolmogorov, the series converges locally uniformly in 
G and almost surely in  and hence defines an 
analytic function in G. 

Let be a counting measure of zeros (according to 

their multiplicities) of the function  Here we shall 
be concerned with three general results on the random 
measure  The first one is a formula for the average 

 which is due to Edelman and Kostlan. The 
second, close to Calabi's Rigidity Theorem [4], loosely 

speaking says that the average measure  “almost 

determines” the analytic functions The third 
result, which is due to Offord, is an exponential 
decrease of “tail probabilities'' of an analytic function 
having an excess or deficiency of zeros in a given 
region. An important feature of these three results is 
that they do not need any assumptions about analytic 
functions and “dimension” N. We shall not touch on 
the more delicate statistics of the local correlation 
functions, which was recently of some interest in 
mathematical physics (see references at the end of 
this note). By C and c we denote various positive 
numerical constants which may vary from line to line. 

DETERMINANTAL POINT PROCESSES 

In this chapter we move away from zeros of random 
analytic functions and study a different class of point 
processes known as determinantal point processes. 
These arise surprisingly often, in random matrix 
theory, combinatory and physics. Many examples were 
already known before Macchi introduced the general 
notion in 1975. To motivate the definition, we remind 
the reader that in quantum mechanics, a physical 
quantity, say the position of an electron, is represented 
by a complex valued function (the wave 

function) such that . 

Then gives the probability density function of the 
position. Now consider individual wave 

functions on . The most obvious way to 

construct an rc-particle wave function out of the is 
to Consider 

 

which is tantamount to making the individual positions 
be independent random variables. This does not 
capture the physical reality, for electrons repel, and 
moreover the particles are indistinguishable. For this 
reason, physicists symmetrize or anti- symmetrize the 

wave-function , either of which leads to a 
summarization of the probability density. We shall 

consider anti-summarization here. Symmetrizing 
 would lead to permanental point processes. 

For particles with repulsion (“fermions”), one should 
anti-symmetrize and this yields the wave function 

 

If is orthonormal, then the absolute square of this 
wave function is a probability density, for, integrating 

 against  gives zero unless Thus we 
get the probability density on  

 where Note that 

the probability density vanishes whenever for 

some which indicates that the points 
tend to “repel”.  

There is one more step required. If we want to define 
analogous point processes with infinitely many points, 
or even to effectively study local properties of the 
finite ones, we need to have the joint intensities. Here 
a fortuitous simplification occurs which is at the very 
heart of the virtues of a determinantal point process. 
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