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Abstract – In recent years probabilistic knowledge-based systems such as Bayesian networks and 
influence diagrams have come to the fore as a means of representing and reasoning about complex real-
world situations. Although some of the probabilities used in these models may be obtained statistically, 
where this is impossible or simply inconvenient, modellers rely on expert knowledge. Experts, however, 
typically find it difficult to specify exact probabilities and conventional representations cannot reflect any 
uncertainty they may have. In this way, the use of conventional point probabilities can damage the 
accuracy, robustness and interpretability of acquired models. 

In talking about no discrete probability spaces, it is difficult to avoid measure-theoretic concepts. 
However, to develop extensive formal machinery from measure theory before going into probability (as is 
done in most graduate programs in mathematics) would be inappropriate for the particular audience to 
whom the book is addressed. Thus I have tried to suggest, when possible, the underlying measure-
theoretic ideas, while emphasizing the probabilistic way of thinking, which is likely to be quite novel to 
anyone studying this subject for the first time. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

The origin of probability theory lies in physical 
observations associated with games of chance. It was 
found that if an “unbiased” coin is tossed independ-
ently n times, where n is very large, the relative 
frequency of heads, that is, the ratio of the number of 
heads to the total number of tosses, is very likely to be 
very close to 1/2. Similarly, if a card is drawn from a 
perfectly shuffled deck and then is replaced, the deck 
is reshuffled, and the process is repeated over and 
over again, there is (in some sense) convergence of 
the relative frequency of spades to 1/4. 

In the card experiment there are 52 possible outcomes 
when a single card is drawn. There is no reason to 
favor one outcome over another (the principle of 
“insufficient reason” or of “least astonishment”), and so 
the early workers in probability took as the probability 
of obtaining a spade the number of favorable 
outcomes divided by the total number of outcomes, 
that is, 13/52 or 1/4. 

This so-called “classical definition” of probability (the 
probability of an event is the number of outcomes 
favorable to the event, divided by the total number of 
outcomes, where all outcomes are equally likely) is 
first of all restrictive (it considers only experiments with 
a finite number of outcomes) and, more seriously, 

circular (no matter how you look at it, “equally likely” 
essentially means “equally probable,” and thus we 
are using the concept of probability to define 
probability itself). Thus we cannot use this idea as the 
basis of a mathematical theory of probability; 
however, the early proba- bilists were not prevented 
from deriving many valid and useful results. 

Similarly, an attempt at a frequency definition of 

probability will cause trouble. If is the number of 
occurrences of an event in n independent 
performances of an experiment, we expect physically 

that the relative frequency should co verge to a 
limit; however, we cannot assert that the limit exists in 
a mathematical sense. In the case of the tossing of 

an unbiased coin, we expect that , but a 
conceivable outcome of the process is that the coin 
will keep coming up heads forever. In other words it is 

possible that , or that any number 

between 0 and 1, or that  has no limit at all. 

In this study we introduce the concepts that are to be 
used in the construction of a mathematical theory of 

probability. The first ingredient we need is a set , 
called the sample space, representing the collection 
of possible outcomes of a random experiment. For 
example, if a coin is tossed once we may 
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take , where H corresponds to a head and 
T to a tail. If the coin is tossedtwice, this is a different 

experiment and we need a different , 

say ; in this case one performance 
of the experiment corresponds to two tosses of the 
coin. 

If a single die is tossed, we may take to consist of 

six points, say However, another 
possible sample space consists of two points, 
corresponding to the outcomes “N is even” and “N is 
odd,” where N is the result of the toss. Thus different 
sample spaces can be associated with the same 
experiment. The nature of the particular problem under 
consideration will dictate which sample space is to be 
used. If we are interested, for example, in whether or 

not in a given performance of the experiment, 
the second sample space, corresponding to “N even” 
and “N odd,” will not be useful to us. 

In general, the only physical requirement on is that a 
given performance of the experiment must produce a 

result corresponding to exactly one of the points of . 

We have as yet no mathematical requirements on ; it 
is simply a set of points. 

Next we come to the notion of event. An “event” 
associated with a random experiment corresponds to a 
question about the experiment that has a yes or no 
answer, and this in turn is associated with a subset of 
the sample space. For example, if a coin is tossed 

twice and , “the number of 

heads is ” will be a condition that either occurs or 
does not occur in a given performance of the 
experiment. That is, after the experiment is performed, 

the question “Is the number of heads ” can be 

answered yes or no. The subset of corresponding to 

a “yes” answer is ; that is, if the 
outcome of the experiment is HT, TH, or TT, the 
answer 

 

Figure 2.1 Coin-Tossing Experiment. 

to the question “Is the number of heads ” will be 
“yes,” and if the outcome is HH, the answer will be 
“no.” Similarly, the subset of Q associated with the 
“event” that the result of the first toss is the same as 

the result of the second toss is . 

Thus an event is defined as a subset of the sample 
space, that is, a collection of points of the sample 
space.  

Events will be denoted by capital letters at the 
beginning of the English alphabet, such as A, B, C, 
and so on. An event may be characterized by listing all 
of its points, or equivalently by describing the 
conditions under which the event will occur. For 
example, in the coin-tossing experiment just 
considered, we write 

A = {the number of heads is less than or equal to 1} 

This expression is to be read as “A is the set 
consisting of those outcomes which satisfy the 
condition that the number of heads is less than or 
equal to 1,” or, more simply, “A is the event that the 
number of heads is less than or equal to 1.” The 
event A consists of the points HT, TH, and TT; 

therefore we write , which is to be
 read “A is the event consisting of the points 
HT, TH, and TT." As another example, if B is the 
event that the result of the first toss is the same as 
the result of the second toss, we may describe B by 
writing B = {first toss = second toss} or, equivalently, 

(see Figure 2.1). 

Each point belonging to an event A is said to be 
favorable to A. The event A will occur in a given 
performance of the experiment if and only if the 
outcome of the experiment corresponds to one of the 

points of A. The entire sample space is said to be 
the sure (or certain) event; if must occur on any given 
performance of the experiment. On the other hand, 
the event consisting of none of the points of the 

sample space, that is, the empty set , is called the 
impossible event; it can never occur in a given 
performance of the experiment. 

PROBABILITY 

We now consider the assignment of probabilities to 
events. A technical complication arises here. It may 

not always be possible to regard all subsets of as 
events. We may discard or fail to measure some of 
the information in the outcome corresponding to the 

point , so that for a given subset A of , it 
may not be possible to give a yes or no answer to the 

question “Is ” For example, if the experiment 
involves tossing a coin five times, we may record the 
results of only the first three tosses, so that A = (at 
least four heads} will not be “measurable”; that is, 

membership of cannot be determined from the 

given information about . 

In a given problem there will be a particular class of 

subsets of called the “class of events.” For 
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reasons of mathematical consistency, we require that 

the event class form a sigma field, which is a 

collection of subsets of  satisfying the following 
three requirements. 

  (2.1) 

implies (2.2) 

That is, is closed under finite or countable union. 

implies (2.3) 

That is, is closed under complementation. 

Notice that if. then by 

(2.3); hence by (2.2). By the DeMorgan 

laws,  hence, by 

(2.3), . Thus is closed under finite 
or countable intersection. Also, by (2.1) and (2.3), the 

empty set belongs to  Thus, for example, if the 

question “Did occur?” has a definite answer for n
 = 1, 2,... , so do the questions “Did at least one 

of the occur?” and “Did all the occur?” 
Note also that if we apply the algebraic operations to 

sets in , the new sets we obtain still belong to  

In many cases we shall be able to take = the 

collection of all subsets of , so that every subset 

of is an event. Problems in which cannot be 
chosen in this way generally arise in uncountably 

infinite sample spaces; for example, = the reals. 

Weare now ready to talk about the assignment of 

probabilities to events. If , the probability P{A) 
should somehow reflect the long-run relative frequency 
of A in a large number of independent repetitions of 
the experiment. Thus P(A) should be a number 

between 0 and 1, and should be 1. 

Now if A and B are disjoint events, the number of 

occurrences of  in n performances of the 
experiment is obtained by adding the number of 
occurrences of A to the number of occurrences of B. 

Thus we should have if A 

and B are disjoint and, similarly,  if 

 are disjoint for mathematical convenience 
we require that 

 

when we have a countably infinite family of disjoint 

events  

The assumption of countable father than simply finite 
additively has not been convincingly justified physically 
or philosophically; however, it leads to a much richer 
mathematical theory. 

A function that assigns a number P(A) to each set A 

in the sigma field  is called a probability measure 

on , provided that the following conditions are 
satisfied. 

for every (2.4) 

(2.5) 

If are disjoint sets in , then 

  (2.6) 

We may now give the underlying mathematical 
framework for probability theory. 

BASIC AXIOMS 

The probability of an event is the area of the 
rectangle that represents the event, and the sample 
space is the union of all events. This representation 
can be generalized to more abstract spaces and 
leads to an axiomatic definition of probability in terms 
of measure over a collection of subsets. This 
collection is assumed to contain the empty set, and to 
be closed under the complementation and countable 

union (i.e. .) 

Theorem 2.1 Let S denote the sample space. A set 

function defined in is a probability function if: 

1.  For any event A in , then ; 

= 1; 



 

 

Rajkumar Ahuja1* Dr. Vinod Kumar Sharma2 

w
w

w
.i

g
n

it
e

d
.i
n

 

4 

 

 An Analysis upon Concept and Basics of Probability Theory: A Review 

3. If are exclusive events in and 

hence for all i,j, then 

 

From these axioms, the following elementary 
properties can be derived.  

Properties 1 Let be a probability function defined 

over the sample space . Then satisfies the 
following properties: 

1. = 0; 

2. is finitely additive; if are events 

in , such that for all , then 

    (2.7) 

If these events form a partition ofS, i.e. they are such 

that , then ; 

3. , so that for any A 

in ; 

4. if then ; 

Axiom (iii) is known as countable additively and it is 
rejected by a school of probabilists who replace the 
countable additivity by finite additivity. 

Consider now the two events A and B . If we 

computed as  we would 

obtain that exceeds 1. The error 

here is that, in computing as , the 
event A, B is counted twice. Indeed, we can 

decompose A into and similarly B 

into . Since the 

intersection , the events and 
(A, B) are exclusive and there follows, from item 3 in 

Theorem 2.1, that and 

similarly . The 

event  is given by , 
and the three events are exclusive. Thus, from 
property (2.7) we have 

. The rule derived 
in this example holds in general: 

   

SAMPLE AND EVENT SPACES 

Sample Space - 

A probabilistic (or statistical!) experiment has the 
following characteristics: 

(a)  the set of all possible outcomes of the 
experiment can be described; 

(b)  the outcome of the experiment cannot be 
predicted with certainty prior to the 
performance of the experiment. 

The set of all possible outcomes (or sample points) of 
the experiment is called the sample space and is 

denoted by . For a given experiment it may be 
possible to define several sample spaces. 

Example For the experiment of tossing a coin three 
times, we could define 

(a)  
each outcome being an ordered sequence of 
results; or 

(b)  

each outcome being a possible value for the number 
of heads obtained. 

If consists of a list of outcomes (finite or infinite in 

number), is a discrete sample space. Examples 

i.  Tossing a die:  

ii.  Tossing a coin until the first head 

appears:  

Otherwise is an uncountable sample space. In 

particular, if belongs to a Euclidean space (e.g. real 

line, plane), is a continuous sample space. 

Example Lifetime of an electronic 

device:  

Event Space - 

Events - A specified collection of outcomes in is 

called an event: i.e., any subset of  (including  
itself) is an event. When the experiment is performed, 
an event A occurs if the outcome is a member of A. 

Example In tossing a die once, let the event A be the 

occurrence of an even number: i.e., . If 
a 2 or 4 or 6 is obtained when the die is tossed, event 
A occurs. 
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The event is called the certain event, since some 

member of must occur. A single outcome is called an 
elementary event. If an event contains no outcomes, it 
is called the impossible or null event and is denoted 

by . 

Combination of events - Since events are sets, they 
may be combined using the notation of set theory: 
Venn diagrams are useful for exhibiting definitions and 
results, and you should draw such a diagram for each 
operation and identity introduced below. 

[In the following. A, B, C, A\, ...,An are events in the 

event space (discussed below), and are therefore 

subsets of the sample space . 

The union of A and B, denoted by , is the 
event „either A or B, or both‟. 

The intersection of A and B, denoted by , is the 
event „both A and B'. 

The union and intersection operations are 
commutative, i.e. 

 (2.8) 

associative, i.e. 

 (2.9) 

and distributive: 

 (2.10) 

If A is a subset of B, denoted by , then 

 and  

The difference of A and B, denoted by A\B, is the 
event „A but not B’. 

The complement of A, denoted by is the event „not 
A'. 

The complement operation has the properties: 

 (2.11) 

and (2.12) 

Note also that Hence use of the 
difference symbol can be avoided if desired (and will 
be in our discussion). 

Two events A and B are termed mutually exclusive 

if   

Two events A and B are termed exhaustive 

if  

The above results may be generalized to combinations 

of n events: thus is the event „at 

least one of  „. 

is the event „all 

of ‟. 

 

 (2.13) 

 (2.14) 

or

 (2.15) 

 or 

 (2.16) 

(The last two results are known as de Morgan‟s Laws 
- see e.g. Ross for proofs.) 

The events are termed mutually 

exclusive if for all  

The events are termed exhaustive 

if  

If the events are both mutually
 exclusive and exhaustive, they are called a 

partition of  
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Event space - The collection of all subsets of may 
be too large for probabilities to be assigned reasonably 
to all its members. This suggests the concept of event 
space. 

A collection of subsets of the sample space is called 

an event space (or -field) if (a) the certain 

event and the impossible event belong to  

(b)  if , then  

(c)  if , then ,

 i.e. is closed under the operation of taking 
countable unions. It is readily shown that, 

if , then  For  

(invoking properties (b) and (c) of and the result 
follows from property (b). 

For a finite sample space, we normally use the 

collection of all subsets of (the power set of ) as 

the event space. For (or a subset of 
the real line), the collection of sets containing all one-
point sets and all well-defined intervals is an event 
space. 

CONDITIONAL PROBABILITY 

The probabilities considered so far are unconditional 
probabilities. In some situations, however, we may be 
interested in the probability of an event given the 
occurrence of some other event. For instance, the 
probability of R: “Tomorrow, January 16th, it will rain in 
Amherst” would change, if we happened to know that 
tomorrow is a cloudy day. Formally, if we denote by C 
the event “Tomorrow, 16th of January, will be cloudy”, 
assuming the occurrence of C is equivalent to 
restricting our sample space, because other events as 
S (sunny day) are ruled out. We thus need to 
recompute the probability of R by taking into account 
this new piece of information. This is formally done by 
considering the conditional probability of R given that 

C occurs. This event is denoted by . 

Consider the events A and B. If we limit the scenario of 
possible events to A, the occurrence of B would be 
restricted to A, B. If we knew that A occurs, we would 

then deduce . However, 

since , we can only state 

that , where k is proportionality 
constant that accounts for the uncertainty in the 

occurrence of A. Clearly, we have and also 

. From this, we deduce 

that and the conditional probability is thus 
defined as follows. 

Definition 2.1 (Conditional Probability) Let A and B 

events in , and suppose that  The 
conditional probability of B given A is: 

  (2.17) 

To emphasize that is unconditional, is called 
marginal probability. 

Example 2.1 (Conditional Probability) Consider 
choosing a card from a well-shuffled standard deck of 
52 playing cards. The probability that the first card 
extracted is an ace is clearly 4/52. Suppose that, after 
the first extraction, the card is not reinserted in the 
deck. What is the probability that the second card is an 
ace, given that the first card is an ace? Let A be the 
event that the first card is an ace, and let B be the 
event that the second card is an ace. The probability 
of A, B is 

 

and . On using (2.17) we have 

 

Indeed, there are three aces left in a deck of 51 
cards. 

From the definition of conditional probability in (2.17), 
we derive the probability of the intersection of two 
events, called their joint probability in terms of 
conditional and marginal probabilities: 

  (2.18) 

This rule can be applied to a larger number of events 
and produces the multiplication rule or factorization 
rule. 

Definition 2.2 (Multiplication Rule) The joint probability 

of a set of events can be expressed 

as  
Consider again the events A and B . The events A 

and form a partition of , so that we can 
decompose B into the union of the two exclusive 

events A, B and . Thus, if we use (4) and the third 
axiom of we have: 

 (2.19) 
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Formula (2.19) is known as the Total Probability 
Theorem and expresses the marginal probability of B 
as a weighted average of the conditional probabilities 

 and  with weights given by  and 

. The importance of the Total Probability 
Theorem is that, sometimes, expressing conditional 
probabilities can be easier than expressing marginal 
probabilities, and (2.19) can be used to “break down” 
an event in more specific events, on which a more 
precise knowledge is available. Suppose, as an 
example, that B is the event that the result of a test to 
diagnose the presence of a disease A is positive. 

Quantifying the incidence of false positive and 

false negative  can be easier than quantifying the 
marginal probability of B. If, further, the incidence rate 

of A is known, then (2.19) can be used to derive . 

The multiplication rule and the Total probability 
theorem can be extended to conditional probabilities. 
So, 

 

 

and  
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