
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REVIEW ARTICLE 
 
 
 
 

Study of Political Representations: Diplomatic 
Missions of Early Indian to Britain 

Journal of 
Advances and 

Scholarly 
Researches in 

Allied 
Education 

Vol. 3, Issue 6, 
April-2012, 

ISSN 2230-7540 

 

 

 

 

Journal of Advances in 
Science and Technology                     

Vol. XI, Issue No. XXIII, 
August-2016, ISSN 2230-

9659 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

AN 

INTERNATIONALLY 

INDEXED PEER 

REVIEWED & 

REFEREED JOURNAL 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

AN OVERVIEW ON CLASSIFICATION AND 
METHODS USED IN UNCONSTRAINED 

OPTIMIZATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

www.ignited.in 

 



 

 

Shashi Sharma* 

 

w
w

w
.i

gn
it

e
d

.i
n

 

1 

 

 Journal of Advances in Science and Technology                     
Vol. XI, Issue No. XXIII, August-2016, ISSN 2230-9659 
 

An Overview on Classification and Methods 
Used in Unconstrained Optimization 

 

Shashi Sharma* 

Mathematics Department, D.  A. V. College, Muzaffarnagar-251001 

Abstract – The Numerical Optimization of general nonlinear multivariable target functions requires 
productive and robust techniques. Effectiveness is significant on the grounds that these issues require 
an iterative arrangement technique, and experimentation ends up unrealistic for more than three or four 
variables. Robustness (the capacity to accomplish an answer) is alluring in light of the fact that a general 
nonlinear function is capricious in its conduct; there might be relative maxima or minima, saddle focuses, 
locales of convexity, concavity, etc. In certain areas the optimization algorithm may advance all around 
gradually toward the optimum, requiring over the top PC time. Luckily, we can draw on broad 
involvement in testing nonlinear programming algorithms for unconstrained functions to assess different 
methodologies proposed for the optimization of such functions. In this Article, we studied about the 
Unconstrained Optimization, its classification and Methods used in it. 

---------------------------♦----------------------------- 
 

1. INTRODUCTION 

The analytics of varieties is worried about the 
assurance of extreme (maxima and minima) or 
stationary estimations of functional. A functional can 
be characterized as a function of a few different 
functions. The analytics of varieties is an intense 
technique for the arrangement of problems in optimal 
monetary activity of intensity frameworks. In this 
segment we present the subject of variational math 
through a derivation of the Euler equations and related 
transversality conditions. 

In the unconstrained optimization problem, we have to 

discover the estimation of the vector   
that limits the function: 

 

given that the function f is continuous and has a first-
arrange derivative. 

To get the minimum as well as maximum of the 
function f we set its first derivative as for x to zero 

 

Above equations speak to n equations in n questions. 
The arrangement of these equations produces 
competitor arrangement focuses. In the event that the 
function f has second halfway derivatives, at that 
point we ascertain the Hessian matrix, 

 

On the off chance that the matrix H is sure 
unequivocal, at that point the function f is a minimum 
at the applicant points, yet in the event that the matrix 
H is negative unmistakable then f is a maximum at 
the candidate points. 

2. CLASSIFICATIONS OF UNCONSTRAINED 
OPTIMIZATION METHODS 

A few methods are accessible for taking care of an 
unconstrained minimization problem. These methods 
can be grouped into two general classifications as 
direct search methods and descent methods. The 
direct search methods require just the target function 
values yet not the partial derivatives of the function in 
finding the minimum and consequently are regularly 
called the non-gradient methods. The direct search 
methods are otherwise called zeroth-order methods 
since they utilize zeroth-order derivatives of the 
function. These methods are most reasonable for 
basic problems including a generally modest number 
of variables. These methods are, by and large, less 
effective than the descent methods. The descent 
methods require, notwithstanding the function values, 
the first and sometimes the second derivatives of the 
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goal function. Since more data about the function 
being limited is utilized (using derivatives), descent 
methods are for the most part more effective than 
direct search procedures. The descent methods are 
known as gradient methods. Among the gradient 
methods, those requiring just first derivatives of the 
function are called first-order methods; those requiring 
both first and second derivatives of the function are 
named second-order methods. 

3. UNCONSTRAINED OPTIMALITY 
CONDITIONS 

All the unconstrained minimization methods are 
iterative in nature and thus they begin from an 
underlying preliminary arrangement and continue 
toward the minimum point in a consecutive way. The 
iterative procedure is given by 

 

Where Xi is the starting point, Si is the search 

direction, is the optimal step length, and Xi+1 is the 
last point in emphasis I. Note that all the unconstrained 
minimization methods (1) require an underlying point 
X1 to begin the iterative methodology, and (2) vary 
from each other just in the method of creating the new 
point Xi+1 (from Xi) and in testing the point Xi+1 for 
optimality. 

3.1 Rate of Convergence 

Distinctive iterative optimization methods have diverse 
rates of union. When all is said in done, and 
optimization method is said to have joining of order p if 

 

where Xi and Xi+1 denote the points obtained at the 

end of iterations i and i + 1, respectively, X∗ speaks to 
the ideal point, and ||X|| indicates the length or 
standard of the vector X: 

 

the method is said to be 
straightly united (relates to moderate joining). In the 
event that p = 2, the method is said to be quadratically 
merged (relates to quick joining). An optimization 
method is said to have super linear meeting 
(compares to quick joining) if 

 

The meanings of rates of convergence given in 
equations are pertinent to single-variable and in 

addition multivariable optimization problems. On 
account of single-variable problems, the vector, Xi, for 
example, degenerates to a scalar, xi. 

3.2 Scaling of Design Variables 

The rate of convergence of most unconstrained 
minimization methods can be enhanced by scaling the 
design variables. For a quadratic target function, the 
scaling of the design variables changes the condition 
number† of the Hessian matrix. At the point when the 
condition number of the Hessian matrix is 1, the 
steepest descent method, for instance, finds the 
minimum of a quadratic target function in a cycle: 

denotes a quadratic term, a 
transformation of the form 

 

Can be used to obtain a new quadratic term as 

 

Where the matrix [S] is given by 

 

4. Methods Used in Unconstrained Optimization 

4.1 Grid Search Method 

This method includes setting up a reasonable network 
in the design space, assessing the target function at 
all the brace points, and finding the framework direct 
comparing toward the most minimal function value. 
For instance, if the lower and upper limits on the ith 
design variable are known to be li and ui, respectively, 
we can divide the range (li, ui) into pi − 1 equal parts 
so that x (1) i , x (2) i , . . . , x (pi) i denote the grid 
points along the xi axis (i = 1, 2, . . . , n). This leads to 
a total of p1p2 · · · pn grid points in the design space. 
A lattice with pi = 4 is appeared in a two-dimensional 
design space. The lattice points can likewise be 
picked in view of methods of exploratory design. It 
can be seen that the framework method requires 
restrictively vast number of function assessments in 
most pragmatic problems. For instance, for a problem 
with 10 design variables (n = 10), the quantity of 
matrix points will be 3

10
 = 59,049 with pi = 3 and 4

10
 = 

1,048,576 with pi = 4. Notwithstanding, for problems 
with few design variables, the grid method can be 
utilized helpfully to locate an inexact minimum. 
Additionally, the grid method can be utilized to locate 
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a decent beginning stage for one of the more effective 
methods. 

 

Figure 1: Grid with pi = 4. 

4.2 Newton’s Method 

Newton's method, with every one of its varieties, is the 
most critical method in unconstrained optimization. Let 
f: IR

n
 → IR be a given function and assume that ∇

2
f is 

continuous. Newton's method for the minimization of f 
can be inferred expecting that, given xk, the point xk+1 
are acquired limiting a quadratic guess of f. As f is two 
times differentiable, it is conceivable to compose: 

 

In which 

 

For ||s|| adequately little, it is conceivable to 

rough with its quadratic approximation 

 

the value of s minimizing q(s) can be 
gotten setting to zero the gradient of q(s), i.e 

 

Yielding 

 

The point xk+1 is thus given by 

 

Finally, Newton’s method can be described by the 
simple scheme. 

 

 

Step 3:  

 

4.3 Quasi-Newton Method 

By and large, methods that use gradient data look to 
locate a stationary purpose of f by finding a zero of 

the gradient ∇f. A general class of methods, semi 
Newton methods, tries to do this by utilizing Newton's 
method to discover a base of ∇f. The hidden 
supposition in these methods is that the function f can 
locally be approximated by a quadratic. 

Standard Newton's method refreshes candidate 
arrangements at every iteration via 

 

Where  indicates the Hessian, or the second 
derivative of f . Updates can be extremely costly 
since we should locate the reverse of a n × n matrix 
at each iteration. To ease computational cost, 
approximations to the Hessian and its backwards are 
utilized. There are various ways the Hessian can be 
approximated, one method that is widely utilized is 
from the Broyden family which utilizes a raised mix of 
Daviodon– Fletcher– Powell and BFGS refreshes. 

4.4 Univariate Method 

In this method we change just a single variable at any 
given moment and try to deliver an arrangement of 
enhanced approximations to the minimum point. By 
beginning at a base point Xi in the ith iteration, we 
settle the values of n − 1 variables and fluctuate the 
staying variable. Since just a single variable is 
changed, the problem turns into a one-dimensional 
minimization problem can be utilized to create 

another base point The search is presently 
preceded in another direction. 

This new direction is acquired by changing any of the 
n − 1 variables that were settled in the past iteration. 
Truth be told, the search method is proceeded by 
taking each organize direction thusly. After all the n 
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directions are searched successively, the principal 
cycle is finished and henceforth we rehash the whole 
procedure of consecutive minimization. The technique 
is preceded until the point when no further change is 
conceivable in the target function in any of the n 
directions of a cycle. 

The univariate method is exceptionally basic and can 
be executed effectively. Be that as it may, it won't 
merge quickly to the ideal arrangement, as it tends to 
waver with consistently diminishing advancement 
toward the ideal. Henceforth it will be smarter to stop 
the calculations sooner or later close to the ideal point 
instead of endeavoring to locate the exact ideal point. 
In theory, the univariate method can be connected to 
locate the minimum of any function that has 
continuous derivatives. In any case, if the function has 
a precarious valley, the method may not by any means 
focalize. For instance, think about the forms of a 
function of two variables with a valley. In the event that 
the univariate search begins at point P, the function 

value can't be diminished either in the direction or 

in the direction . In this manner the search stops 
and one might be deluded to take the point P, which is 
surely not the ideal point, as the ideal point. This 
circumstance emerges at whatever point the value of 
the test length ε required for distinguishing the best 

possible direction  happens to be not as 
much as the quantity of huge figures utilized as a part 
of the calculations. 

4.5 Steepest Descent Method 

The utilization of the negative of the gradient vector as 
a direction for minimization was first made by Cauchy 
in 1847. In this method we begin from an underlying 
preliminary point X1 and iteratively move along the 
steepest descent directions until the point that the 
ideal point is found. The steepest descent method can 
be condensed by the accompanying advances: 

1. Start with an arbitrary initial point X1. Set the 
iteration number as i = 1. 

2. Find the search direction Si as 

 

3. Determine the optimal step length  in the 
direction Si and set 

 

4. Test the new point, for optimality. If 

are optimum, stop the process. Otherwise, 
go to step 5. 

5. Set the new iteration number i = i + 1 and go 
to step 2. 

The method of steepest descent may have all the 
earmarks of being the best unconstrained minimization 
system since every one-dimensional search begins in 
the "best" direction. Nonetheless, inferable from the 
way that the steepest descent direction is a 
neighborhood property, the method isn't generally 
viable in many problems. 

4.6 Random Search Methods 

Random search methods depend on the utilization of 
random numbers in finding the minimum point. Since a 
large portion of the PC libraries have random number 
generators, these methods can be utilized helpfully. A 
portion of the best known random search methods are 
introduced in this segment. 

5.  CONCLUSION 

In most structural design problems the objective is to 
limit a function with many design variables, yet the 
investigation of minimization of functions of a solitary 
design variable is significant for a few reasons. 
Substituting projection methods have been broadly 
used to locate the nearest point, to a given point, in 
the convergence of a few given sets that have a place 
with a Hilbert space. One of the attributes of these 
plans is the moderate union that can be seen in 
practical applications. Albeit most structural 
optimization problems include limitations that bound 
the design space, investigation of the methods of 
unconstrained optimization is significant for a few 
reasons. Above all else, on the off chance that the 
design is at a phase where no requirements are 
dynamic, at that point the way toward deciding a look 
bearing and travel remove for limiting the objective 
function includes an unconstrained function 
minimization algorithm. Obviously in such a case one 
has always to look for requirement violations amid the 
move in design space. 
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