
 

 

 

Rajeev Kumar1* Dr. Alok Mishra2 
 
 

w
w

w
.i

g
n

it
e
d

.i
n

 

80 

 

 Journal of Advances in Science and Technology                     
Vol. 12, Issue No. 24, November-2016, ISSN 2230-9659 
 

An Analysis upon the Contribution of Protein 
Interaction Systems in Duseases 

 

Rajeev Kumar1* Dr. Alok Mishra2 

1
Research Scholar, SSSUTMS, Sehore 

2
UTD, SSSUTMS, Sehore 

Abstract – The study of protein-protein interactions is essential to define the molecular networks that 
contribute to maintain homeostasis of an organism‘s body functions. Disruptions in protein interaction 
networks have been shown to result in diseases in both humans and animals. Monogenic diseases 
disrupting biochemical pathways such as hereditary coagulopathies (e.g. hemophilia), provided a deep 
insight in the biochemical pathways of acquired coagulopathies of complex diseases. Indeed, a variety of 
complex liver diseases can lead to decreased synthesis of the same set of coagulation factors as in 
hemophilia. Similarly, more complex diseases such as different cancers have been shown to result from 
malfunctions of common proteins pathways. In order to discover, in high throughput, the molecular 
underpinnings of poorly characterized diseases, we present a statistical method to identify shared protein 
interaction network(s) between diseases. Integrating (i) a protein interaction network with (ii) disease to 
protein relationships derived from mining Gene Ontology annotations and the biomedical literature with 
natural language understanding (PhenoGO), we identified protein-protein interactions that were 
associated with pairs of diseases and calculated the statistical significance of the occurrence of 
interactions in the protein interaction knowledgebase. 

Significant correlations between diseases and shared protein networks were identified and evaluated in 
this study, demonstrating the high precision of the approach and correct non-trivial predictions, 
signifying the potential for discovery. In conclusion, we demonstrate that the associations between 
diseases are directly correlated to their underlying protein-protein interaction networks, possibly 
providing insight into the underlying molecular mechanisms of phenotypes and biological processes 
disrupted in related diseases. 

During a decade of proof-of-principle analysis in model organisms, protein networks have been used to 
further the study of molecular evolution, to gain insight into the robustness of cells to perturbation, and 
for assignment of new protein functions. Following these analyses, and with the recent rise of protein 
interaction measurements in mammals, protein networks are increasingly serving as tools to unravel the 
molecular basis of disease. We review promising applications of protein networks to disease in four 
major areas: identifying new disease genes; the study of their network properties; identifying disease-
related subnetworks; and network-based disease classification. 

Applications in infectious disease, personalized medicine, and pharmacology are also forthcoming as the 
available protein network information improves in quality and coverage. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Currently, common diseases are mainly defined by 
their clinical appearance, with little reference to their 
molecular mechanism. For example, syndromes are 
defined in medicine as a set of phenotypes which, 
occurring together, serve to define a trait or disease. 
These phenotypes overlap in the case of many 
syndromes. This overlap brought about the concept of 
‗syndrome families‘ though consideration of the 
commonality of features shared between diseases. 
Conceptually, what we have learned about 2000 

human single gene diseases with a defined genetic 
phenotype is that each monogenic disease has a 
specified collection of specific phenotypic features. 
For example, hemophilia‘s with deficiencies in 
coagulation factors, otherwise called hereditary 
coagulopathies, are single gene diseases with clear 
Mendelian inheritance that have provided significant 
insight in the biochemical pathways of acquired 
coagulopathies. Indeed, a variety of complex liver 
diseases can lead to decreased synthesis of the 
same set of coagulation factors as in hemophilia, 
leading to the same disease phenotype despite very 



 

 

Rajeev Kumar1* Dr. Alok Mishra2 

 

w
w

w
.i

gn
it

e
d

.i
n

 

81 

 

 An Analysis upon the Contribution of Protein Interaction Systems in Duseases 

different causes. In some cases, the clustering of 
syndromes into these families in combination with 
genetic insights has led to the discovery that what 
were often thought as two different disorders were 
really variable expressions of the same disorder. 
Conversely, it has long been known that mutations at 
different loci can lead to the same genetic disease. It 
has also been hypothesized that this genetic 
heterogeneity has its roots at the protein interaction 
level, suggesting that other genes associated with the 
phenotype also have some functional role. Therefore, 
it is plausible to theorize that phenotypic overlap of 
diseases may reflect, at multiple biological scales, the 
relationships and functional properties of shared 
underlying molecular networks. As signal transduction 
pathways are less understood than biochemical 
pathways, protein-protein interactions networks 
provide unique opportunities for exploring the signaling 
pathways of diseases. 

The shift in focus to systems biology has resulted in an 
increased interest in biological pathways and protein-
protein interaction networks. As a result, large scale 
knowledge bases representing them are being rapidly 
developed. These resources enable us to study 
complex biological problems using high throughput 
computational tools. While there is a wealth of protein-
disease relationships in the published literature and a 
number of readily computable protein-protein 
interaction resources, there has been a paucity of work 
relating diseases using protein interactions from this 
kind of knowledge. Making use of these networks is a 
relatively new challenge in the field. Network-based 
analyses have been developed with a number of goals 
in mind, including protein function prediction, 
identification of functional modules, interaction 
prediction, and the study of network structure and 
evolution. 

To explore the possibility of using protein-protein 
interaction networks to identify correlations between 
diseases, we hypothesize that protein-protein 
interactions shared by two diseases or more can be 
accurately identified in a protein interaction network by 
integrating knowledge from the literature and using 
statistical methods. 

Research on protein-protein interaction networks and 
diseases has been rapidly increasing in the last two or 
three years. Many PPI-based methods have been 
proposed, each with a different way of exploiting the 
key assumption that ―the network-neighbor of a 
disease gene is likely to cause the same or a similar 
disease‖. In an early work, disease genes were 
uncovered by topological features in human PPI 
networks using the k-nearest neighbor algorithm. 
Because of the sparseness of other 
proteomic/genomic data associated with certain 
diseases, several PPI-based methods require the 
integration of heterogeneous biomedical data in order 

to understand the complex interplay between 
genes/proteins and diseases. A disease gene 
classification system has been proposed, to integrate 
the topological features of protein interaction networks 
with sequence and other features, and to analyze 
these features using support vector machines.  

We have come a long way from ―one-gene/one-
enzyme/one function‖ concept originally framed by 
Beadle and Tatum. They provided a basic explanation 
of how genes work at the molecular level, however, we 
now know that the picture is more complex. Biological 
processes inside our body are governed by the well-
defined organization of proteins into complexes, 
which perform different functions acting as molecular 
machines. Major biological processes such as 
immunity (antigen–antibody interaction), metabolism 
(enzyme–substrate interaction), signaling (interaction 
of messenger molecules, hormones, 
neurotransmitters with their cognate receptors), and 
gene expression (DNA–protein interactions), as well 
as the building of supramolecular assemblies 
(collagens, elastic fibers, actin filaments) and 
molecular machines (molecular motors, ribosomes, 
proteasome) were mediated through protein 
interactions. 

Studying the interactome, which is the whole set of 
molecular physical interactions between biological 
entities in cells and organisms, is essential in 
understanding howgene functions and regulations are 
integrated at the level of an organism. 

The notion that, a disease is rarely a consequence of 
an abnormality on a single gene, but it is usually the 
result of complex interactions and perturbations 
involving large sets of genes and their relationships 
with several cellular components, has led to the 
development of the network based approaches to 
understand human disease. 

Theoretical advances in network science and 
paralleling advances in high-throughput efforts to 
map biological networks have provided a conceptual 
framework with which we interpret large interactome 
network maps. Protein–protein interaction (PPI) 
networks are increasingly serving as tools to decipher 
the molecular basis of diseases. Furthermore, the 
sequencing of the genome and advances in 
proteomics leads to the identification of proteins of 
unknown functions. Interaction networks might give 
clues on the functions of these newly discovered 
proteins or on new functions of already identified 
proteins. 

The promising applications of PPI networks to 
disease datasets are concentrated on four major 
areas: (i) the identification of genes and proteins 
associated with diseases, (ii) the study of network 
properties and their relation to disease states, (iii) the 
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identification of disease-related subnetworks, and (iv) 
network-based disease classification.  

Global understanding of networkswill allowresearchers 
to examine the disease pathways and identify 
strategies to control them. The integration of functional 
genomic and proteomic data to obtain dynamic 
network analysis will further improve the success of 
medical research. 

BACKGROUND 

Protein-Protein Interactions - 

Protein-protein interactions are specific interactions 
between two or more proteins. The following is the 
summary of general characteristic of protein-protein 
interactions. Classification: Protein-protein interactions 
can be arbitrarily classified based on the proteins 
involved (structural or functional groups) or based on 
their physical properties (weak and transient, non-
obligate vs. strong and permanent). Protein 
interactions are usually mediated by defined domains, 
hence interactions can also be classified based on the 
underlying domains. 

Universality: All of molecular biology is about protein-
protein interactions. Protein-protein interactions affect 
all processes in a cell: structural proteins need to 
interact in order to shape organelles and the whole 
cell, molecular machines such as ribosomes or RNA 
polymerases are hold together by protein-protein 
interactions, and the same is true for multi-subunit 
channels or receptors in membranes. 

Specificity: distinguishes such interactions from 
random collisions that happen by Brownian motion in 
the aqeous solutions inside and outside of cells. Note 
that many proteins are known to interact although it 
remains unclear whether certain interactions have any 
physiological relevance. 

Protein-protein interactions and protein complexes: 
Most protein-protein interactions are detected as 
interacting pairs or as components of protein 
complexes. Such complexes may contain dozens or 
even hundreds of protein subunits (ribosomes, 
spliceosomes etc.). It has even been proposed that all 
proteins in a given cell are connected in a huge 
network in which certain protein interactions are 
forming and dissociating constantly. 

In Figure 1, complex networks showing the 
interactions among proteins help scientists understand 
how a drug affecting one protein will affect overall cell 
functioning. This protein network for Brewer‘s yeast 
shows which proteins are critical for survival (red), 
which are important for growth but not critical to 
survival (orange), which can be removed without 

slowing growth or killing the cells (green), and which 
are of unknown importance (yellow). 

 

Figure 1: Protein network for Brewer’s yeast. 

Disease-Causing Genes –  

The information contained in our genes is so critical 
that simple changes can lead to a severe inherited 
disease, make us more inclined to develop a chronic 
disease, or make us more vulnerable to an infectious 
disease. In Figure 2, the rules of governing 
monogenetic diseases and complex diseases are 
showed. While monogenetic diseases are caused by 
a single gene and complex diseases are complicated 
combinations of many genes. 

Scientists currently believe that single gene mutations 
cause approximately 6,000 inherited diseases. These 
diseases are called single gene or monogenic 
diseases because a change in only one gene causes 
the disease. These diseases include a number of lung 
and blood disorders, such as cystic fibrosis, sickle cell 
anemia, and hemophilia. Although these conditions 
are not popular however they still affect millions of 
people worldwide. The rules that underlie the 
inheritance of major common diseases are not as 
straightforward. These diseases include heart 
disease, diabetes, Alzheimer disease, psychiatric 
disorders, and osteoarthritis. 

These common diseases result not just from a 
change in one or a few genes, but from a combination 
of the effects of the environment and a number of 
susceptibility genes. 
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Figure 2: Monogenetic diseases and complex 
diseases. 

Susceptibility genes contribute to an individual‘s risk of 
developing a specific disease, but usually are not 
enough to cause the disease. Susceptibility genes 
may influence the age of onset of a disease, contribute 
to its rate of progression, or help to protect against it. 
Understanding the rules of their inheritance and their 
roles in disease is not a simple task. Different alleles 
may be associated with different degrees of 
susceptibility, or risk. The APOE gene on chromosome 
19 is one example of a disease susceptibility gene. 

An individual who has two copies of one variant allele 
of APOE is more likely to develop Alzheimer disease 
at an earlier age than an individual with a different 
APOE genotype. 

From Protein-Protein Interaction Networks To 
Disease-Causing Genes -  

Interactions between specific pairs or groups of 
proteins are essential to all stages of development and 
homeostasis. Not surprisingly, many human diseases 
can be traced to aberrant protein?protein interactions, 
either through the loss of an essential interaction or 
through the formation of a protein complex at an 
inappropriate time or location. There are some 
relationships between diseases and protein 
interactions such as a hitchhiker‘s guide to pathogen 

host interactions, normal protein-protein interactions 
gone wrong, protein protein interaction inhibitors. 

THE ROLE OF NETWORKS IN MEDICINE 

Networks provide a systems-level understanding of 
themechanisms underlying diseases by serving as a 
model for data integration and analysis. 

They have been used to gain insight into disease 
mechanisms, study comorbidities, analyze therapeutic 
drugs and their targets  and discover novel network-
based biomarkers. Network science deals with 
complexity by ―simplifying‖ complex systems to 
components (nodes) and interactions (edges) 
between them (Fig. 3). These simplifications help 
researchers make useful discoveries. 

Networks can be constructed purely based on gene 
expression information, including transcriptional 
regulatory networks and co-expression networks, or 
can also be built upon prior knowledge of protein–
protein interactions. The nodes in a network 
representation are metabolites or macromolecules 
such as proteins, RNA molecules and gene 
sequences, while the edges are physical, biochemical 
or functional interactions. The resulting ―interactome‖ 
network can serve as scaffold information to extract 
global or local graph theory properties,which lead to a 
better understanding of biological processes. 

Since cellular networks consist of various types of 
interaction and regulation, networks reflecting this 
complex scenario will provide better insight into the 
problem in hand. 

 

Fig. 3. Simple representation of a network, nodes 
representing components and edges 

representing interactions. 

Regulatory interaction networks, metabolic networks, 
signaling networks, and protein–protein interaction 
networks cannot be considered in isolation or as 
independent entities. Rather, we have to incorporate 
their intricate interwoven structure. Proteins might act 
alone or in combination: as transcription factors and 
regulators of protein abundances, as enzymes they 
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catalyze and coordinate the basic cellular metabolic 
processes, and they react to external and internal 
stimuli activating other proteins in signaling cascades. 

All of these processes in turn provide cues that may 
lead to the formation or termination of protein 
interactions and complexes. PPI networks in particular 
have become a valuable resource in this context. 

PPI AND DISEASE EXAMPLE 

Let us consider cerebral malaria as an example to 
understand how an analysis of PPI could be used to 
elucidate the molecular basis of disease. Here, a wide 
range of experimental and predicted human–
Plasmodium (host-parasite), human-human (host-host) 
and Plasmodium-Plasmodium (parasite-parasite) PPI 
are combined and analyzed in the context of key 
events and processes of cerebral malaria, a 
dangerous infectious disease (Rao et al., 2010). 

Cerebral malaria is a severe form of malarial infection, 
characterized by cerebral complications, such as 
neuronal damage and coma (Moxon et al., 2009). The 
disease is characterized by processes such as 
sequestration of infected red blood cells to cerebral 
capillaries and venules, systemic inflammation, 
hemostasis dysfunction and neuronal damage (Wilson 
et al., 2008).  

An automated literature retrieval module was 
developed using Entrez Programming Utilities (Sayers 
et al., 2010) to retrieve the list of full-text articles 
relevant to the malarial parasite. This article set was 
pruned using the Medical Subject Headings (MeSH) 
controlled vocabulary for articles relevant to cerebral 
malaria. The resultant set was augmented by articles 
retrieved from the Google Scholar database using 
appropriate disease-specific query terms such as 
systemic inflammation, hemostasis dysfunction etc. 
This article corpus had two main uses: 

 For extracting biochemical and signaling 
events of relevance in cerebral malaria. 

 Identifying pairs of interacting proteins within 
the host, within the parasite and between host 
and parasite. 

Gene Ontology (GO) cellular component annotations 
from PlasmoDB, a comprehensive Plasmodium 
resource, were used to prune the unified PPI dataset 
using the approach of Mahdavi & Lin (2007). In the 
case of PPI involving parasite proteins, only those 
proteins that were annotated to be present on the 
parasite surface or were reported to be released 
during the relevant stage of the parasite were 
considered. For the human protein annotations, tissue-

specific annotations from UniProt (Hubbard et al., 
2009) were used in the pruning process. 

The resultant PPI subset was then analyzed by 
mapping the PPI to key events that influence the 
processes of the disease, as identified from the key 
review articles. The analysis showed the potential 
significance of apolipoproteins and heat-shock 
proteins on efficient Plasmodium falciparum 
erythrocyte membrane protein 1 (PfEMP1) 
presentation, role of the merozoite surface protein 
(MSP-1) in platelet activation, the role of albumin in 
astrocyte dysfunction and the effect of parasite 
proteins in transforming growth factor (TGF)-β 
regulation. The linking of these PPI to molecular 
events associated with the disease pathogenesis 
provides a basis for further experiments to determine 
the molecular basis of this fatal disease. 

METHODOLOGY 

In order to identify associations between diseases by 
mapping their respective protein interaction networks 
with statistical significance values, we took the 
following steps.  

Extraction of human protein-disease relationships 
was achieved though Structured Query Language 
querying of the PhenoGO database. We extracted all 
UMLS-coded diseases classified under the ―Disease‖ 
semantic type hierarchy along with their associated 
proteins. In this study, we chose to stay on a more 
conservative side, and only extracted diseases 
associated with more than 4 proteins to avoid errors 
stemming from mis-assignment in PhenoGO and to 
reduce spurious predictions in the next step from the 
hypergeometric distribution because a single error 
contributes proportionally to a larger statistical impact 
on a smaller sample of protein in the statistical 
method that follows (equation 1). These UMLS-coded 
terms fall under the UMLS semantic types ‗Congenital 
Abnormality‘, ‗Disease or Syndrome‘, ‗Experimental 
Model of Disease‘, ‗Anatomical Abnormality‘, and 
‗Neoplastic Process‘. The resultant set consists of 
154 diseases and their 1,931 associated proteins 
(http://phenos.bsd.uchicago.edu/PSB2007/). 

Integration and Discovery. The second step is to 
correlate diseases with their underlying protein-
protein interaction networks using a statistical 
approach. In this study, we used the Reactome 
protein interaction dataset to define the underlying 
topological networks associated with these diseases. 
The common proteins between diseaseassociated 
proteins in PhenoGO and proteins in the Reactome 
were identified by using the identifiers in the UniProt. 
The Reactome data set defines four distinct types of 
reactions: 1) neighboring reactions, which define 
interactions that occur consecutively; 2) indirect 
complexes, which define interactions which involve 
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subcomplex interaction, but not direct 
binding/interaction; 3) direct complex, defining protein-
protein complexes; and 4) reaction, representing 
situations where the two proteins participate in the 
same reaction. The Reactome dataset was normalized 
to a set of paired Swiss-Prot accession numbers, and 
filtered to remove neighboring reactions and indirect 
complexes, leaving only entries for binary interactions 
and direct complexes. This data set contains 20,317 
distinct interactions corresponding to 1,140 distinct 
proteins. From the 154 diseases, we generated 
combinations of pairs of diseases, and for each pair of 
diseases, proteins in both diseases were also paired 
for all potential combinations. These protein pairs were 
then cross-referenced with our filtered Reactome data 
set to determine if they participated in reactions or 
formed direct complexes with one another. There are 
two basic types of relationships used in calculations in 
our methods. These relationships correspond to the 
two scenarios we considered to determine whether 
two diseases share interaction networks: 1) an identity 
relationship where common proteins are shared by two 
diseases, and 2) direct interactions between protein A 
in one disease and protein B in the other disease. As 
related diseases can share both types of relations, and 
due to the requirements of the hypergeometric 
distribution, we consider both in the underlying protein-
protein interaction network in diseases. Based on this, 
we calculated the correlations between all possible 
pairs of diseases by applying the hypergeometric 
distribution function to identify significantly correlated 
diseases (equation 1) and adjustments for multiple a 
posteriori comparisons (equation 2), as shown below: 

 (1) 

In equation 1, ‗N‘ represents the total number of all 
pair combinations between proteins of any two 
diseases in the experiment that includes the possibility 
of sharing the same proteins (identical protein pair 
between two diseases), ‗M‘, as the sum of number of 
observed distinct pairs of interacting proteins that exist 
in the Reactome database for all 

the diseases in the experiment (direct interaction only), 
‗n‘ as the putative total number of pairs of proteins that 
could exist in a pair of disease, and ‗m‖ as the sum of 
the observed number of common proteins shared 
between two specific diseases and the number of 
distinct pairs of interacting proteins observed in the 
Reactome database for these two specific diseases (M 
∩ n). This measure gives a p-value which is then 
adjusted for multiple comparisons with the Dunn-Sidak 
method (a derivative of the Bonferroni method): 

 (2) 

In equation 2, p‘ and p represent the corrected and 
uncorrected p-values, respectively, and r represents 
the number of independent comparisons, which is the 
number of disease pairs (r=11,703) used in the study. 
These corrected p-values are then thresholded at 
p<0.05 to determine the final set of significantly 
correlated disease-disease relationships. Multiple 
diseases and genes sharing the same PubMed IDs 
can artificially boost the statistical significance of these 
disease pairs, therefore relationships mapping to more 
than 2 overlapping PubMed IDs were removed to 
reduce the this artifact. A total of 11,703 disease 
pairs passed the filter out of 11,780 candidates. 77 
combinations had more than two PMID overlaps and 
were filtered out as a result of this process. 

Evaluations. Two evaluations were conducted. The 
first one, a quantitative evaluation, was designed to 
control for the error rate in either assigning a protein 
disease relationship in PhenoGO or a protein-protein 
interaction in Reactome. It consisted of establishing 
the reliability of the predictions if we introduced noise 
in the integrated database network (10% more 
protein-protein interactions in the same set of 
diseases). 

The second one, a qualitative evaluation, consisted of 
carefully examining the discovered protein 
interactions shared by two diseases and identifying 
references in the scientific literature that validate the 
phenotypic overlap and potentially the protein 
interactions. 

 

Figure 4. Distribution of the number of disease 
pairs from PhenoGO according to the number of 
possible protein interactions observed between 

their proteins in the Reactome. 

RESULTS 

In this study, we examined a subset of PhenoGO 
pertaining to human diseases in order to identify 
relationships between these diseases according to 
criteria described in the methods. This filtering 
resulted in a set of 154 diseases and their 1,931 
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associated proteins. The intersection between the 
proteins of the Reactome and those of PhenoGO 
further reduced the set of proteins to 286. The number 
of candidate proteins per disease was greatly reduced 
by the need to be present in the Reactome dataset, 
and therefore the totals are smaller than observed in 
the PhenoGO database alone. We lose approximately 

70% of the proteins in this process due to the limited 
content of the Reactome. In order to identify 
relationships between these diseases, we analyzed 
their underlying proteinprotein interaction maps by 
applying a statistical method (details of equations in 
the Method Section). Of the 154 selected diseases, 
there are (285*286/2+286) = 41,041 distinct 
combinations of protein pairs and identical protein 
overlap (term N, equation 1) possible for all possible 
disease pairs, of which only 4,857 exist in the 
Reactome (term M, equation 1). Figure 4 summarizes 
the distribution of protein-protein pairs per combination 
of diseases in our set. In ~60% of the 11,703 disease 
pairs under consideration, the number of potential 
protein-protein interactions is five or less (no significant 
predictions from this category), and about 40% of them 
have more than five interactions. We then proceeded 
in calculating the correlation between groups of pairs 
of interacting proteins associated with every pair of 
diseases according to equations 1 and 2  (file available 
at http://phenos.bsd.uchicago.edu/PSB2007/). Based 
on the correlations of the shared protein interacting 
pairs between diseases, we identified 10 pairs of 
diseases that are significantly correlated due to their 
shared proteins and protein-protein interactions out of 
11,703 disease pairs examined in this study (Table 1). 

 

Table 1. Top ranked significantly correlated diseases. 

DISCUSSION 

The protein-protein interaction network constructed by 
the Reactome dataset provides us a framework for 
structuring the knowledge of human diseases, which 
enables an objective approach to examine the 
molecular underpinnings of diseases in the context of 
their known molecular interactions on genomic scale. 
This method not only allows us to conduct high 

throughput computational analysis of the relations 
between diseases, but also reveals the underlying 
molecular relationships between diseases. 
Furthermore, new relationships between well-known 
diseases and new diseases could be revealed based 
on their overlapping molecular networks. 

CONCLUSION 

We developed and evaluated an automatic system to 
predict protein interactions shared by two or more 
diseases. It augments current protein interaction 
networks by integrating literature-based knowledge of 
protein-disease associations and systematically 
identifying the statistically significant Protein 
Interactions of Diseases (PID). Results demonstrated 
that the PID system provides accurate predictions and 
is scalable in a number of dimensions: (i) it enables 
high throughput predictions, and (ii) it scales across 
different protein-interaction datasets. Beyond direct 
protein-protein interactions, it also provides the 
theoretical framework to compare shared pathways 
between diseases. In the future, this framework could 
be applied to more complex diseases to determine if 
their shared phenotypes are a result of the shared 
molecular mechanism and pathways. 

We developed and evaluated an automatic system to 
predict protein interactions shared by two or more 
diseases. It augments current protein interaction 
networks by integrating literature-based knowledge of 
protein-disease associations and systematically 
identifying the statistically significant Protein 
Interactions of Diseases (PID). Results demonstrated 
that the PID system provides accurate predictions 
and is scalable in a number of dimensions: (i) it 
enables high throughput predictions, and (ii) it scales 
across different protein-interaction datasets. Beyond 
direct protein-protein interactions, it also provides the 
theoretical framework to compare shared pathways 
between diseases. In the future, this framework could 
be applied to more complex diseases to determine if 
their shared phenotypes are a result of the shared 
molecular mechanism and pathways. 
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