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Abstract – Problems in many different areas of mathematics reduce to questions about the zeros of 
complex univariate and multivariate polynomials. Recently, several significant and seemingly unrelated 
results relevant to theoretical computer science have benefited from taking this route: they rely on 
showing, at some level, that a certain univariate or multivariate polynomial has no zeros in a region. This 
is achieved by inductively constructing the relevant polynomial via a sequence of operations which 
preserve the property of not having roots in the required region. The goal of this article is to present this 
viewpoint and to convey why the study of zeros is a natural, powerful, and versatile tool. It is meant to be 
a gentle introduction for the essential techniques underlying these results, is largely self-contained and 
aimed at a broad theory audience. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

Consider the following results relevant in theoretical 
computer science: 

1. The permanent of an n x n stochastic matrix is 
at least . (This has been used to show that 
every d-regular graph on n vertices has a 
traveling salesman tour of length at most. 

2.  The polynomial time approximation algorithm 
for the Traveling Salesman Problem on undi-
rected. unweighted graphs with approximation 
ratio , for some constant , USD. 

3. The seminal result by Lee and Yang in 
statistical physics that shows the lack of phase 
transition in the Ising model, and the mean 
magnetization of the Ising model and the 
average size of a matching in the monomer-
dimer model are both #P-hard to compute. 

4. For every d, there is an infinite sequence of d-
regular bipartite Ramanujan graphs, whose 
adjacency matrices have all nontrivial 

eigenvalues bounded by . 

Every transitive graph with m edges and n vertices can 
be partitioned into  edge- disjoint subgraphs of size 

, each of which approximates the cuts of the 
original graph up to a constant factor. This is a special 
case of a spectral discrepancy theorem about par-

titioning sets of vectors in , which also resolves the 
Kadison-Singer problem in operator theory. 

While the above problems and results seem 
unrelated, their solutions share a common thread: 
they all rely on showing, at some level, that a certain 
univariate or multivariate polynomial has no zeros in 
a region of  (e.g., the upper complex half-plane, or 
the unit disk). This is achieved by inductively 
constructing the relevant polynomial via a sequence 
of operations which preserve the property of not 
having roots in the required region. 

For instance, when the coefficients of the polynomial 
are real and the region of no zeros is the upper 
complex-half plane, the polynomial is called real 
stable and this property is preserved under 
operations such as multiplication, taking derivatives 
and specialization to real values. While there are 
extensive and difficult characterizations of real stable 
polynomials. the above properties of real stable 
polynomials are rather simple to prove and, 
surprisingly, are sufficient for the applications listed 
above. Moreover, when the polynomials are of 
combinatorial origin, these operations have clear 
algebraic and combinatorial interpretations. Thus, 
there is a robust way to encode many kinds of 
combinatorial objects as polynomials, and to draw 
useful conclusions from their analytic properties. 
More generally, this serves as evidence against the 
stereotype that the roots of polynomials are brittle 
and ill-behaved (which is the case under unnatural 
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operations such as perturbing the coefficients), and 
therefore difficult to exploit. 

Roughly, these principles are evident in the 
applications listed above as follows: In this paper, 
closure of real stability under taking derivatives allows 
one to lower bound the value of the permanent of a 
doubly stochastic matrix. In this study, using the fact 
that the polynomials corresponding to the max-entropy 
probability distributions on spanning trees are real-
stable, robust and novel negative correlation and anti-
concentration properties of them are established. The 
result in EU relies on 

a stability result for derivatives of the partition function 
of the Ising model and extends the famous Lee-Yang 
theorem, real stability allows one to relate the behavior 
of one polynomial to the behavior of a sum of 
polynomials leading to a new existence argument. 
Lastly, this theory allows the authors to control the 
evolution of roots of a polynomial under the application 
of differential operators. 

One may argue that some of the applications above 
have alternative proofs that do not require this 
machinery. However, the fact remains that 
understanding the zeros of the relevant polynomials is 
important, and. in certain cases, has led to major 
progress in problems of interest. Moreover, with 
dramatic progress in the mathematics of this area, 
such techniques have recently reached a certain 
maturity which makes them ripe for applications. Thus, 
we feel that there is need to communicate the 
essential techniques underlying these results, in a 
largely self-contained manner, to a broad theory 
audience, and that is the goal of this article. For more 
in depth exposition of techniques. 

MULTIVARIATE POLYNOMIALS 

Recall that  is said to be real stable if 

 and no root of it lies in  

It seems harder to show that a multivariate polynomial 
is real stable. The first lemma reduces the problem of 
checking real stability of a multivariate polynomial to 
checking real-rootedness of a set of univariate 
polynomials, and turns out to be quite effective. 

Lemma. A multivariate polynomial  is 
stable if and only if for all  and all , the 
univariate polynomial  is real-rooted. 

Proof. Suppose that  is  real-rooted for all 

and all , but f is not real stable. 

The latter implies that there is an  

such that . Let  and . Since 

 for all i. But then  and, 

hence,  is a root of  which contradicts the 

real-rootedness of  

For the other direction, suppose that there are  

and  and a  such that  Since 
complex roots of a univariate polynomial appear in 
conjugates, we may assume that  Thus, the 

imaginary part of each component of is strictly 

positive contradicting the fact that  is real stable. 

Using the lemma above, several multivariate 
polynomials can be shown to be real stable. Perhaps 
the simplest such polynomial (which can be seen to be 
real stable without appealing to the lemma above) is 

 when  for all i. Since a root of a polynomial 
that is a product of two polynomials is a root of at least 
one of those two polynomials, the polynomial 

 is also real stable. A bit more non-trivially, 
the following important class of polynomials arising 
from determinants can be shown to be real stable. 

Lemma. Let  be positive definite 
matrices0 and B be a symmetric m x m real matrix. 

Then the polynomial  
is real stable. 

Proof. By Lemma it is sufficient to prove that for all 

 and .  is real-rooted. This is the 
same as showing that 

 

is real-rooted. Since  and  for all 

. Thus, letting , we need to show 
that 

 

This latter is true because  is 
symmetric and every real-symmetric has all real 
eigenvalues. To see this, if A is a real symmetric 
matrix and  isan eigenvalue with an 
eigenvector then  ‗Conjugating both sides 
we obtain that , where  is the conjugate 

transpose of  Hence,  since A is 

symmetric. Thus,  which implies that  
Thus,  

The above lemma can be proved in the setting 

when are positive semi-definite (PSD) as opposed 
to being positive-definite. This is quite useful for 
applications. However, extending Lemma requires the 
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following theorem from complex analysis whose proof 
is beyond the scope of the current article. 

Theorem (Hurwitz). Let  be a sequence of  -
stable polynomials over  for  a connected and 

open set  that uniformly converge to a polynomial  

over compact subsets of . Then  is  -stable. 

To use this theorem for a matrix  which is just 

guaranteed to be PSD one approximates each  by a 

sequence of matrices  which are positive 

definite and converge to  ask goes to infinity. 

One can ask if all real stable polynomials arise from 
such determinants. This is the content of the Lax 
Conjecture and the interested reader is referred to. 

LOWER BOUNDING THE PERMANENT 

As a simple but powerful application of the closure 
properties we show how, starting with simple 
polynomials, we can argue about non-trivial (and 
computationally intractable) objects such as the 

permanent of a matrix. For a matrix  
with real entries, its permanent is defined to 

be  

Consider the polynomial  and 
note that  is clearly real stable. 

Moreover, it follows from a repeated application of 
Lemma that, for any  the polynomial 

 

is real stable. Note that . 
 If all entries of A are nonnegative, then it 
follows from Lemma that, for any fixed positive 

 

 

Where  is the degree of the polynomial 

. Fixing , let  

be defined to be  

Thus, applying the above inequality for to and 

letting  we obtain that  which is 
at least 

 

Since  we need to calculate 

 It turns out that when A is a doubly 
stochastic matrix, then this quantity can be lower 
bounded by 1. Recall that a matrix A is said to be 

doubly stochastic matrix, i.e.,  and,  for

 all  and  for all f. To see the claim, 
observe that for any positive  

 

Thus, when A is doubly stochastic,. Noting that 
we have proved the van der Waerden conjecture. 

 

Theorem. For a doubly stochastic matrix A, 

 

As a corollary, let  be a k-regular bipartite 

graph with  Let A be the matrix with 

rows indexed by  columns by W, and  if 

. Then,  is doubly stochastic and, hence, 

. Note that per(A) counts exactly the 
number of perfect matchings in G. 

PROBABILITY MEASURES AND REAL 
STABILITY 

In this section we study probability distributions over 

 by looking at their generating function. For a 

distribution the generating function is the 
multivariate affine polynomial 

 

If  is real stable, then one can derive a host of 

properties of by appealing to the closure properties 

enjoyed by real stable polynomials. In this case,  is 
said to be strongly Rayleigh. 

Definition . A measure over  is said to be 
strongly Rayleigh if its generating function 

 is real stable. 

Strongly Rayleigh measures satisfy the strongest 
forms of negative dependence, a consequence of 
which is the concentration of measure for a sum of 
random variables drawn from a such a measure. As a 
starting point, we prove the pairwise negative 
correlation property of strongly Rayleigh measures. 



 

 

Mithilesh Kumari Jain* 
 
 

w
w

w
.i

g
n

it
e
d

.i
n

 

178 

 

 An Analysis upon Various Applications of Zeros of Complex Univariate and Multivariate Polynomials: A 
Review 

Definition. A measure  is said to be pairwise 

negatively correlated if   for all 

 In terms of polynomials, this condition is 
equivalent to 

 

In fact, for strongly Rayleigh measures, one can show 
something stronger: the condition holds for all 

 rather than just the vector .
 This property, in fact, implies the strong 
Rayleigh measures but we just prove the forward 
direction. 

Lemma. If    is affine and stable, then 

 

for all  Thus, the lemma implies that 
strongly Rayleigh measures are pair wise negatively 
correlated. 

Proof Fix  and 

. It follows from 

Lemma along with Theorem  that  is stable. On 
the other hand, since  is affine, 

 

Since  is stable, for any  such that 

 If  then (dropping  for 
the easy of reading). 

 

Multiplying the first equation by  and the 

second by  and adding them, we obtain 

 

Since,  this implies that  
completing the proof. 

REAL STABILITY AND INTERLACING 

In this section we show how real stability can be used 
to show that a bound on the largest root of a sum of a 
certain family of polynomials implies the same bound 
on the largest root of one polynomial in the family. This 
novel technique is central to the proof of the existence 
of Ramanujan graphs of all degrees [OS], and the 
resolution of the Kadison-Singer problem. 

More formally, the family of polynomials we consider is 

 where each polyno mial in the family is of 
the same degree and has a positive leading 

coefficient. For we define a 
random polynomial  where  is an independent 
Bernoulli random variable which is 1 with probability 

 and -1 with probability  Assume, the 
seemingly strong hypothesis, that this family 

polynomials satisfies, for every  the polynomial 

 is real-rooted. Such a family is shown to 
have the property that if the largest root of  is 
bounded by , then there is a  such that the largest 

root of  is also bounded by . This is captured in the 
following theorem. 

Theorem .Suppose  is a family of real-
rooted polynomials with positive leading coefficients 
where all have the same degree. Then, there is a  
such that the largest root of   is at most the largest 

root of  While we do not go into the the 
proof of the hypothesis for any specific family in this 
article, we mention that the real-rootedness of 

 is shown by constructing a suitable 
starting multivariate polynomial that is real stable and 
then applying a carefully chosen sequence of closure 
properties such as the ones presented in paper We 
start the proof of Theorem for a family which satisfies 
the above hypothesis by observing the following 
implication of the hypothesis. 

Lemma . Under the hypothesis, for any fixing  
any convex combination of 

 and  are real-
rooted. 

Proof. For a parameter  set  and 

 and  for  k. It follows 
that 

 which is real-rooted by the hypothesis. 

CONCLUSION 

The conclusion of the above lemma is interesting 
because if any convex combination of two univariate 
polynomials with leading positive coefficients is real-
rooted, then they have a common interlacing. Two 

real-rooted polynomials  and  of the same 
degree (d) are said to interlace if their roots alternate. 

More formally, if  are roots of  

and  are the roots of g, then 

 or 
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Further, if there is a polynomial which interlaces with 

both  and , we say that they have a common 
interlacing. The following lemma can be proved by 
showing that, if one looks at the intervals 
corresponding to the successive roots of each 
polynomial and order them from left to right, the 
corresponding intervals have non-empty intersection. 
This is a consequence of the fact that two interlacing 
polynomials with positive leading coefficients cannot 
differ in the number of roots they have in any interval 
of the form  by more than 1. We omit the 
elementary but somewhat tedious proof. 
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