

Mohan A. Gholap1*, Aashita A. Mahajan2, Y. M. Naik3

w
w

w
.i

gn
it

e
d

.i
n

123

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

Software Defined Networking

Mohan A. Gholap1*, Aashita A. Mahajan2, Y. M. Naik3

1
P.G. Student, GIT, Belgaum

2
Ph.D. Scholar, Kalinga University, Raipur

3
Asst. Prof. HIT, Nidasoshi

Abstract – Over the last decade, the hottest topics in networking have been software defined networking
(SDN). However, there is considerable confusion amongst enterprise IT organizations about SDN. There
are many sources of that confusion, including the sheer number of vendors who have solutions that
solve different problems using different solution architectures and technologies, all of whom claim to be
offering SDN solutions. The primary goal of this our paper is to eliminate that confusion. In order to
accomplish that goal, this paper will put SDN into the context of a broad movement to have more of a
focus on software based solutions and it will identify the key opportunities that SDN can address.

---------------------------♦-----------------------------

I. INTRODUCTION

Communication networks are growing in size and
complexity at an ever-increasing rate, with the
conventional infrastructure, network systems, and
protocol stack, which hardly provide adequate
solutions to the contemporary networking demands.
This triggered the emergence of a different approach
to network systems architecture, called Software-
Defined Networking (SDN) [1]. SDN, has been present
for the last 20 years, [2]. Recently, OpenFlow [3]
succeeded in establishing itself as an SDN industry
standard. OpenFlow validated the SDN approach, and
many network architectures, network systems, and
data centers adopted SDN and turned it into a
mainstream approach in network design.

SDN offers many advantages, such as centralized and
decentralized control of multiple cross-vendor network
elements, mainly data plane platforms with a common
API abstraction layer for all SDN-enabled equipment. It
also reduces the complexity of network configuration
and operation that is achieved by automation high
level configuration is translated into specific forwarding
behavior of network elements. SDN allows easy
deployment of new protocols and network-services as
a result of high operation abstraction. Increased
control granularity in SDN allows a per flow definition
with a high granularity policy level. SDN infrastructure
can adjust to the specific user application running on it
via the control plane, which greatly improves the user
experience.

Software Defined Networking, however, has its
disadvantages: the added flexibility and functionality
require additional overhead on the equipment, and as

a result there are performance penalties in terms of
processing speed and throughput. This is not to say
that the overall performance is necessarily
decreasing; many network services and tasks that
were executed by the end-nodes or by the control or
management layers of the network systems can be
executed by the SDN-enabled equipment in a simpler
and quicker way, thereby improving the overall
performance of the networking tasks.

Despite SDN’s continuing growth in popularity, there
have been relatively few studies that deal with
performance evaluation of SDN architectures.
Tootoonchian et al. [4] focused mainly on
performance evaluation of the control plane of SDN.
Rotsos et al. [5] proposed a tool for evaluating
performance of one specific SDN architecture, i.e.,
several OpenFlow implementations, and measured
raw performance of OpenFlow without comparison to
other SDN solutions, or to non-SDN network
systems. Their work indicated that performance is
affected by the number and type of actions applied to
the data-frame, as well as the specific implementation
of the SDN. Another study of data plane performance
evaluation of OpenFlow soft switch was carried out
by Bianco et al. [6], using different frame sizes and
rules.

II. TRADITIONAL DATA NETWORK

In the traditional approach to networking, most
network functionality is implemented in a dedicated
appliance such as switch, router, application delivery
controller, etc. In addition, within the dedicated
appliance, most of the functionality is implemented in

Mohan A. Gholap1*, Aashita A. Mahajan2, Y. M. Naik3

w
w

w
.i

g
n

it
e
d

.i
n

124

 Software Defined Networking

dedicated hardware such as an ASIC (Application
Specific Integrated Circuit).

Disadvantages of this approach to developing network
appliances are:

 The ASICs that provide the network
functionality evolve slowly

 The evolution of ASIC functionality is under
the control of the provider of the appliance

 The appliances are proprietary

 Each appliance is configured individually

 Tasks such as provisioning, change
management and de-provisioning are very
time consuming and error prone

Networking organizations are under increasing
pressure to be more efficient and agile than is possible
with the traditional approach to networking. One
source of that pressure results from the widespread
adoption of server virtualization [7]. The bottom line is
that a traditional network evolves slowly; is limited in
functionality by what is provided by the vendors of the
ASICs and the vendors of the network appliances; has
a relatively high level of OPEX and is relatively static in
nature. SDN holds the promise of overcoming those
limitations.

III. A FLOW TOWARDS SOFTWARE BASED
APPROACHES

As noted, the traditional data network has been largely
hardware-centric. However, over the last few years the
adoption of virtualized network appliances and the
burgeoning interest in software defined data centers
(SDDCs) have lead a movement towards an increased
reliance on software-based network functionality. For
example, in the mid to late 2000s, network appliances
such as WAN Optimization Controllers (WOCs) and
Application Delivery Controllers (ADCs) were purpose-
built, hardware appliances[8]. That means that
functions such as encryption/decryption and the
processing of TCP flows were performed in hardware
that was designed specifically for those functions.
Driven largely by the need for increased agility, it is
now common to have WOC or ADC functionality
provided by software running on a general purpose
server or on a VM.

A SDDC can be looked at as the complete opposite of
the traditional data center network that was previously
described. For example, one of the key characteristics
of a software-defined data center is that all of the data
center infrastructure is virtualized and delivered as a
service. Another key characteristic is that the
automated control of data center applications and

services is provided by a policy-based management
system.

A. Opportunities

One of the characteristics that is often associated with
any fundamentally new approach to technology is that
there is confusion about the opportunities that can be
addressed by that new approach. In order to
successfully evaluate and adopt a new approach to
technology such as SDN [8], IT organizations need to
identify which opportunity or opportunities that are
important to the organization are best addressed by
that new approach.

After all of the SDN-related discussions that have
occurred over the last couple of years, the following
have emerged as the most likely set of opportunities
that SDN can address.

 Support the dynamic movement, replication
and allocation of virtual resources.

 Ease the administrative burden of the
configuration and provisioning of functionality
such as QoS and security.

 More easily deploy and scale network
functionality.

 Perform traffic engineering with an end-to-
end view of the network.

 Better utilize network resources.

 Reduce OPEX.

 Have network functionality evolve more
rapidly based on a software development
lifecycle.

 Enable applications to dynamically request
services from the network.

 Implement more effective security
functionality.

 Reduce complexity.

IV. SOFTWARE DEFINED NETWORKING
(SDN)

The Open Networking Foundation (ONF) is the group
that is most associated with the development and
standardization of SDN [7]. According to the ONF1,
“Software-Defined Networking (SDN) is an emerging
architecture that is dynamic, manageable, cost-
effective, and adaptable, making it ideal for the high-
bandwidth, dynamic nature of today’s applications.
This architecture decouples the network control and

Mohan A. Gholap1*, Aashita A. Mahajan2, Y. M. Naik3

w
w

w
.i

gn
it

e
d

.i
n

125

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

forwarding functions enabling the network control to
become directly programmable and the underlying
infrastructure to be abstracted for applications and
network services. The OpenFlow protocol is a
foundational element for building SDN solutions.”

A. ADVANTAGES

1. Directly programmable: Network control is
directly programmable because it is decoupled
from forwarding functions.

2. Agile: Abstracting control from forwarding
lets administrators dynamically adjust network-
wide traffic flow to meet changing needs.

3. Centrally managed: Network intelligence is
(logically) centralized in software- based SDN
controllers that maintain a global view of the
network, which appears to applications and
policy engines as a single, logical switch.

4. Programmatically configured: SDN lets
network managers configure, manage, secure
and optimize network resources very quickly
via dynamic, automated SDN programs, which
they can write themselves because the
programs do not depend on proprietary
software.

5. Open standards-based and vendor-neutral:
When implemented through open standards,
SDN simplifies network design and operation
because instructions are provided by SDN
controllers instead of multiple, vendor-specific
devices and protocols.

B. ARCHITECTURE

Figure 1: The SDN System Architecture

Below is the description of some of the key concepts
that are part of the SDN system architecture that is
shown in Figure 1.

a. Business Applications

 This refers to applications that are directly
consumable by end users. Possibilities include video

conferencing, supply chain management and customer
relationship management.

b. Network & Security Services

This refers to functionality that enables business
applications to perform efficiently and securely.
Possibilities include a wide range of L4 – L7
functionality including ADCs, WOCs and security
capabilities such as firewalls, IDS/IPS and DDoS
protection.

c. Pure SDN Switch

In a pure SDN switch, all of the control functions of a
traditional switch (i.e., routing protocols that are used
to build forwarding information bases) are run in the
central controller. The functionality in the switch is
restricted entirely to the data plane.

d. Hybrid Switch

In a hybrid switch, SDN technologies and traditional
switching protocols run simultaneously. A network
manager can configure the SDN controller to discover
and control certain traffic flows while traditional,
distributed networking protocols continue to direct the
rest of the traffic on the network.5

e. Hybrid Network

A hybrid network is a network in which traditional
switches and SDN switches, whether they are pure
SDN switches or hybrid switches, operate in the
same environment.

f. Northbound API

Relative to Figure 1, the northbound API is the API
that enables communications between the control
layer and the business application layer. There is
currently not a standards-based northbound API.

g. Southbound API

Relative to Figure 1, the southbound API is the API
that enables communications between the control
layer and the infrastructure layer. Protocols that can
enable this communications include OpenFlow, the
extensible messaging and presence protocol (XMPP)
and the network configuration protocol. Part of the
confusion that surrounds SDN is that many vendors
don’t buy in totally to the ONF definition of SDN. For
example, while some vendors are viewing OpenFlow
as a foundational element of their SDN solutions,
other vendors are taking a wait and see approach to
OpenFlow. Another source of confusion is
disagreement relative to what constitutes the
infrastructure layer. To the ONF, the infrastructure
layer is a broad range of physical and virtual switches

Mohan A. Gholap1*, Aashita A. Mahajan2, Y. M. Naik3

w
w

w
.i

g
n

it
e
d

.i
n

126

 Software Defined Networking

and routers. As described below, one of the current
approaches to implementing network virtualization
relies on an architecture that looks similar to the one
shown in Figure 1, but which only includes virtual
switches and routers.

C. NETWORK SECURITY

SDN architecture may enable, facilitate or enhance
network-related security applications due to the
controller’s central view of the network, and its
capacity to reprogram the data plane at any time.
While security of SDN architecture itself remains an
open question that has already been studied, the idea
consists of periodically collecting network statistics
from the forwarding plane of the network in a
standardized manner (e.g. using Openflow), and then
apply classification algorithms on those statistics in
order to detect any network anomalies. If an anomaly
is detected, the application instructs the controller how
to reprogram the data plane in order to mitigate it.

Another kind of security applications leverages the
SDN controller by implementing some moving target
defense (MTD) algorithms. MTD algorithms are
typically used to make any attack on a given system or
network more difficult than usual by periodically hiding
or changing key properties of that system or network.
In traditional networks, implementing MTD algorithms
is not a trivial task since it is difficult to build a central
authority able of determining - for each part of the
system to be protected - which key properties are hid
or changed. In an SDN network, such tasks become
more straightforward tasks to the centrality of the
controller. One application can for example periodically
assign virtual IPs to hosts within the network, and the
mapping virtual IP/real IP is then performed by the
controller. Another application can simulate some fake
opened/closed/filtered ports on random hosts in the
network in order to add significant noise during
reconnaissance phase (e.g. scanning) performed by
an attacker.

Developing applications for software defined networks
requires comprehensive checks of possible
programming errors. Since SDN controller applications
are mostly deployed in large scale scenarios a
programming model checking solution requires
scalability.

V. SUMMARY

While a SDN is comprised of many enabling
technologies, SDN is not a technology, but an
architecture. Whether it is fabric or overlay-based,
network virtualization can be viewed as a SDN
application. The primary benefit of a network
virtualization solution is that it provides support for
virtual machine mobility independent of the physical
network. SDN, however, has other potential benefits

including easing the administrative burden of
provisioning functionality such as QoS and security.

While some of the characteristics of a SDN, such as
the increased reliance on software, are already widely
adopted in the marketplace, vendors have only
recently begun to ship SDN solutions and SDN
adoption is just beginning. Given all of the potential
benefits that SDN is likely to provide, IT organizations
need to develop a plan for how they will evolve their
networks to incorporate SDN.

REFERENCES

G. Goth, “Software-Defined Networking Could Shake
Up More than Packets,” IEEE Internet
Computing, vol. 15, no. 4, pp. 6–9, 2011.

D. L. Tennenhouse and D. J. Wetherall, “Towards an
active network architecture,” SIGCOMM
Comput. Commun. Rev., vol. 26, no. 2, pp.
5–17, April 1996.

N. McKeown, T. Anderson, H. Balakrishnan, G. M.
Parulkar, L. L. Peterson, J. Rexford, S.
Shenker, and J. S. Turner, “OpenFlow:
enabling innovation in campus networks,”
Computer Communication Review, vol. 38,
no. 2, pp. 69–74, 2008.

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M.
Casado, and R. Sherwood, “On controller
performance in software-defined networks,” in
Proc. USENIX Hot-ICE, 2012.

C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A.
W. Moore, “OFLOPS: An Open Framework
for OpenFlow Switch Evaluation,” in Proc.
PAM, 2012, pp. 85–95.

A. Bianco, R. Birke, L. Giraudo, and M. Palacin,
“OpenFlow Switching: Data Plane
Performance,” in Proc. ICC, 2010, pp.1–5.

http://www.webtorials.com/content/2014 /01/2013-
guide-to-network-virtualization-sdn-3.html

citrix.com/sdn

Corresponding Author

Mohan A. Gholap*

P.G. Student, GIT, Belgaum

E-Mail – mohangholap04@gmail.com

http://www.webtorials.com/content/2014/01/2013-guide-to-network-virtualization-sdn-3.html
http://www.webtorials.com/content/2014/01/2013-guide-to-network-virtualization-sdn-3.html
mailto:mohangholap04@gmail.com

