

Arun Raj S. R.*

w
w

w
.i

gn
it

e
d

.i
n

175

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

High Performance and Scalable on-chip Bus
with Thread Extension using Open Core

Protocol

Arun Raj S. R.*

Department of Electronics & Communication Engineering, University B.D.T College of Engineering, Davangere-
Karnataka

Abstract – In recent technology most of the core function need an on-chip bus having inter-operability
interface irrespective of the core features. The issues that relate to SOC are communication between
different core, integration of different clocked domain, increase in performance of system and
requirement of a standard protocol interface. This paper presents the open core protocol (OCP) interface
implementation with features simple basic OCP signals, burst OCP signals, tag OCP signals. The OCP
interface is investigated with two different core systems. The implementation is designed with Xilinx ISE
tool in verilog HDL language and verification of OCP interface is carried out.

Keywords— OCP, SOC, OCP interface.

---------------------------♦-----------------------------

I. INTRODUCTION

The Integration of different core technology requires
an efficient and robust on-chip bus interface. The
different core in a system-on-chip (SOC) needed bus-
independent design, so that core can operate without
pertaining to on-chip bus functionality and
communicate with any other core. An on-chip bus is
implemented based on the OCP interface specification
specified by the organization OCP-IP, OCP is a non-
proprietary, openly licensed and a core-centric
protocol which describes the system level integration
requirements of IP-core. The AMBA specification is
defined by the ARM Company which contains the bus
architecture details to interconnect more than one
master or slave [1]. An OCP specification contains
signals and timing which is described by the members
of OCP-IP [2]. An introduction to open core protocol is
defined in the paper [3]. The OCP is interfaced with
AHB bus which shows that OCP can work with
different cores and with different bus architecture.
OCP require a bridge interface, if two different bus
architecture needs to be integrated for communication
[4-6]. The on-chip bus using OCP interface is
presented in the paper [7-10] the OCP interface is
implemented with features simple transaction, burst
transaction, tag transaction. The OCP is a core-centric,
based on point-to-point interface, OCP provides
synchronous interface while the cores connected to
the OCP interface can be either synchronous or
asynchronous.

II. OCP INTERFACE

An OCP interface follows three types of interconnect
as shown in figure2.1. First is the peripheral
interconnect which interconnect timer, I/O device,
Interrupt controller these are simple basic signals,
support single accesses and not necessary to use
burst-related signals, a simple read and write
communication with added handshake signals may
be used. Second is the high speed interconnect
these are required for subsystem components that
require high throughput such as processor, co-
processors, memory controllers and DMA engines.
These interconnect require burst-related signals to
improve throughput and flow control. These can also
carry Tag transaction to implement ordered sequence
and out-of-order sequence. Third is the bridging
interconnect this is intended to bridge to other
interface protocols. The bridge can have either an
OCP master or slave port.

Arun Raj S. R.*

w
w

w
.i

g
n

it
e
d

.i
n

176

 High Performance and Scalable on-chip Bus with Thread Extension using Open Core Protocol

Figure 2.1 : An OCP interconnect for core

A. Simple basic OCP signals

Simple basic OCP signals carry out simple read and
write operation this may include handshake signals.
The figure2.2 shows three operations and the basic
OCP signals. The command signal MCmd denotes the
type of operation. WR in the MCmd denote the write
operation specified by OCP master. MAddr and MData
have the address and data for communication. When
OCP slave gets ready to accept data from OCP master
the SCmdAccept signal goes high and MData is
received by the OCP slave. If OCP master signals
MCmd as RD a read operation is performed. OCP
master gives the address (MAddr) and when OCP
slave is ready (SCmdAccept = 1) the data read is
available at the SData and successful transaction is
indicated by the Data valid/available signal (DVA).
Once DVA is indicated OCP master read data from
SData this process shows handshake signaling with
OCP slave. If the OCP master signals MCmd as
WRNP which represent a non-posted write operation is
performed, this is similar to the write operation but a
successful transaction is indicated by the DVA.

Figure 2.2: Simple read, write and non-post write
transaction

A. Burst OCP signals

Burst OCP signals are required for high throughput of
transaction. Burst transactions allow multiple transfers
and pipeline the request without delay. The figure2.3
shows the Burst OCP signals with two write (WR)
operation and two read (RD) operation. The first two
write operation uses the MBurstLength to know length
of the word to be written, MAddr hold the address,
MBurstPrecise must be a constant and MBurstSeq
specifies type of burst operation here the address is
incremented by its OCP wordsize hence the command
used is INCR. DVA1 and DVA2 indicate the write
operation is successful. Next two read operation
operate similar to the read operation, each read
operation read BurstLength size of wordsize data from
SData when SResp indicate a DVA. After completion
of the request the MReqLast signal goes high to
indicate burst request finished. SRespLast signal
goes high after completion of the response to indicate
burst response finished.

Figure 2.3: Burst OCP signals

B. Out-of-Order OCP signals

Out-of-Order or Tag transactions provide two types of
transaction first is the out-of-order transaction which
uses the tag ID to identify the transaction, these
transfer may be delayed since performance fall is
acceptable to these transfers. Where as another type
is in-order transaction where the sequence of the
request is processed sequentially. Tag transfer allows
flow control and priority based transfer. The figure2.4
shows the out-of-order OCP signals have two in-order
request and two out-of-order request. MCmd specifies
the operation to be carried out, MAddr hold the
address, MData and SData hold the write data and
read data respectively. The operation is similar to
read and write operation of basic signals. The signal
MTagID generated by OCP master for a request to be
carried out and the same tag ID is generated by
signal STagID by OCP slave when response to the
request is processed, this is necessary to identify the
transaction. An in-order transaction the response to
the request is not disordered. MTagInOrder go high
when a request phase should be an ordered

Arun Raj S. R.*

w
w

w
.i

gn
it

e
d

.i
n

177

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

sequence and STagInOrder go high to indicate the
ordered sequence.

Figure 2.4: Out-of-order OCP signals

III. IMPLEMENTATION OF AN OCP
INTERFACE

A core is a logical block that must integrate the system
master or system slave in order to obtain a bus
independence interface, this establish a unique
interface between any core block. A system master
initiates the request and controls the operation, while
system slave process the request and respond to the
system master. The OCP master interconnects to the
system slave and OCP slave interconnects to the
system master this establishes an OCP interface. The
peripheral interconnect or high-throughput
interconnect are interfaced to the core as shown in the
figure3.1 with a single path interconnect from one core
to another core. The OCP Bridge is either an OCP
master or an OCP slave.

Figure 3.1: Block diagram of OCP interface

A. Synchronous and Asynchronous transfer

OCP interface operate in synchronous mode, this
enables buffer usage. Initially the configuration is
established with certain frequency to communicate
with any core, and then the required operation is
placed. This synchronous mode requires that both the
core should support the same frequency. In
Asynchronous mode the core will have different
working frequency therefore a handshake signals are

utilized for proper transfer of data and FIFO buffer
used for flow control.

The system master or system slave may operate on
two clock frequency. One is the system clock
frequency which is obtained from the system core and
another OCP clock having common clock frequency to
work with OCP Interface this enables OCP interface to
be a synchronous communication. The figure 3.2
illustrates the clock and signal interface. The cross link
in the system master or slave block shows the
changes in clock and signals this configuration
enables the OCP interface to work with any two
different core systems, hence Inter-operability is
established since all cores communicate using OCP
signals. If system master or slave does not have
system clock the OCP clock will drive the system
master or slave block.

Figure 3.2: Illustration of clock and signals
interface

IV. RESULT

The work is coded in verilog HDL language and
simulated using Xilinx ISE tool. Verified timing
waveforms using the Modelsim, Simple OCP Signals,
Burst OCP signals and pipelined OCP signals are
shown in the following figures.

Figure 4.1: OCP Interface module

System master or slave

Core

Clock

and

signals

System

clock

OCP Interface

OCP master or

slave

OCP

Clock

and

signals

OCP

Clock

and

signals

Arun Raj S. R.*

w
w

w
.i

g
n

it
e
d

.i
n

178

 High Performance and Scalable on-chip Bus with Thread Extension using Open Core Protocol

Figure 4.2: master-slave interconnect

Figure 4.3: Basic Write with datahandshake OCP
signals

Figure 4.4: Basic Read with datahandshake OCP
signals

Figure 4.4: Burst request with pipelined
transaction

V. CONCLUSION

The OCP interface is successfully implemented with
two core interfaces and signal flow diagram for simple
read and writes, burst read and write, out-of-order
read and write is verified. Most of the required cores
can be interfaced with the functionality of OCP
interface to communicate with peripheral devices or
high performance required cores. The OCP interface
allows any two cores with system master or slave
integrated could communicate without worrying of on-
chip bus interface design and its operation, this also
enable IP core reusability.

REFERENCES

Advanced Microcontroller Bus Architecture (AMBA)
Specification Rev 2.0 & 3.0,
http://www.arm.com.

Open Core Protocol (OCP) Specification 3.0,
http://www.ocpip.org/home.

Wolf-Dietrich Weber “Enabling Reuse via an IP Core-
centric Communications Protocol: Open Core
Protocol” © 2000 Sonics, Inc.

 Shen-Fu Hsiao, Chi-Guang Lin, Po-Han Wu, and
Chia-Sheng Wen “Asynchronous AHB Bus
Interface Designs in a Multiple-clock-Domain
Graphics System” 2012 IEEE

Cheng-Ta Wu, Feng-Xiang Huang, Kuan-Fu Kuo, Ing-
JerHuang “An OCP-AHB Bus Wrapper with
Built-in ICE Support for SOC Integration”
2012 IEEE

Ramesh Bhakthavatchalu, Deepthy G R, Vidhya S,
Nisha V “Analysis of Low Power Open Core
Protocol Bridge Interface Using VHDL” 2011
IEEE

Chin-yaochang, yi-jiunchang, kuen-jonglee, jen-
chiehyeh,shih-yin linandjui-liangma, “Design

http://www.arm.com/
http://www.ocpip.org/home

Arun Raj S. R.*

w
w

w
.i

gn
it

e
d

.i
n

179

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

of On-Chip Bus with OCP Interface” 2010
IEEE

ElinaRajanVarughese, Rony Antony P
“IMPLEMENTATION OF EXTENDED OPEN
CORE PROTOCOL INTERFACE MEMORY
SYSTEM USING Verilog HDL “ 2013 IEEE

Naga Prasad Reddy.T, Avinash.K “Design and PSL
Verification of SoC Interconnect Using Open
Core Protocol (OCP)” IJCTT Sep 2013

Vikas S. Vij, Raghu Prasad Gudla, Kenneth S.
Stevens “Interfacing Synchronous and
Asynchronous Domains for Open Core
Protocol” 2014 IEEE.

Corresponding Author

Arun Raj S. R.*

Department of Electronics & Communication
Engineering, University B.D.T College of Engineering,
Davangere, Karnataka

E-Mail – arunrajsr5@gmail.com

mailto:arunrajsr5@gmail.com

