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Abstract – This electronic document describes the method of implementation of Fast Fourier transform 
processor: FFT using mixed CORDIC and radix algorithm. The basic result analyzed using this method is 
power consumption and area. CORDIC is basically DSP application but here it is used for twiddle factor 
multiplication. Radix 2^5 fft algorithm is used for reduction of complex multiplication. The proposed 
calculation minimizes the quantity of multipliers. Outline illustrations demonstrate that the FFT planned 
by the proposed system displays a lower equipment with more quality than existing techniques.  

At first FFT usefulness is checked utilizing MATLAB lastly re-enacted and integrated utilizing Xilinx ISE 
14.1.Besides CORDIC calculation is executed in both MATLAB and in Xilinx on Virtex-5. The fundamental 
goal of this work is to get a territory proficient FFT and CORDIC without execution misfortune that could 
be utilized as a piece of Signal preparing.  
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1. INTRODUCTION 

1.1 Overview 

A Fast Fourier transform (FFT) is a fast computational 
algorithm to compute the discrete Fourier transform 
(DFT) and its inverse. The Fast Fourier Transform 
does not refer to a new or different type of Fourier 
transform. It refers to a very efficient algorithm for 
computing the DFT. The time takes to perform a DFT 
on a computer depends primarily on the number of 
multiplications involved O (N2)) while FFT only needs 
Nlog2(N).The central insight which leads to this 
algorithm is the realization that a discrete Fourier 
transform of a sequence of N points can be written in 
terms of two discrete Fourier transforms of length N/2. 
Therefore, if N is a power of 2, it is possible to 
recursively apply this decomposition.  

The main research idea of this work is optimize the 
design of FFT processor. Area and power reduction is 
the main objective of this work. So CORDIC algorithm 
introduced with radix 2^5 FFT algorithm. The 
Coordinate Rotation Digital Computer (CORDIC) 
algorithmic, proposed by Jack Voider[1] can be utilized 
for an extensive variety of capacities including certain 
trigonometric, hyperbolic, straight and logarithmic 
capacities. The Coordinate Rotation Digital Computer 
(CORDIC) algorithmic, proposed by Jack Voider can 
be utilized for an extensive variety of capacities 
including certain trigonometric, hyperbolic, straight and 
logarithmic capacities. CORDIC unit utilizes just moves 

and add to figure these capacities. The CORDIC 
algorithm provides an iterative method of performing 
vector rotation mode, CORDIC is used for converting 
one vector in rectangular form to another vector in 
rectangular form. In the vector mode, it converts a 
vector in rectangular form to polar form. Hence 
CORDIC is used as an efficient way to realize 
multiplication-free FFT [2].  

The remainder of this project is organized as follows:  

Section II and III review the CORDIC algorithm and 
the general hardware architectures required to 
implement FFT.  

Section IV introduces the proposed radix and 
CORDIC algorithm for 64 point FFT implementation.  

Section V and VI presents the performance 
evaluation and comparison and conclusion 
respectively.  

II. REVIEW OF CORDIC ALGORITHM  

The key concept of CORDIC arithmetic is based on 
the simple and ancient principles of two-dimensional 
geometry. But the iterative formulation of a 
computational algorithm for its implementation was 
first described in 1959 by Jack E. Volder for the 
computation of trigonometric functions, multiplication 
and division [6][7][9]. CORDIC based computing 
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received increased attentionin1971, when John 
Walther showed that, by varying a few simple 
parameters, it could be used as a single algorithm for 
unified implementation of a wide range of elementary 
transcendental functions involving logarithms, 
exponentials, and square roots along with those 
suggested by Volder [7].  

CORDIC is attractive due to the simplicity of its 
hardware implementation, since the same iterative 
algorithm could be used for all the above mathematical 
applications using the basic shift-add operations of the 
form x ± y2-i.  

The conventional method of implementation of rotation 
transform is represented by the equations.  

 

where (xin ,yin ) and (xout ,yout ) are the initial and 
final coordinates of the vector respectively.  

The hardware realization of these equations requires 
four multiplications, two additions/subtractions and 
accessing the table stored in the memory for 
trigonometric coefficients. The CORDIC rotator 
performs 2D rotation using a series of specific 
incremental rotation angles selected so that each is 
performed by a shift and add operation iteratively.  

The three basic equations of CORDIC algorithm are:  

 

Based on the value of m the algorithm can operate in 
one of three configurations:  

Linear (m = 0), Circular (m = 1) and Hyperbolic (m = -
1). Within each of these configurations the algorithm 
functions in one of two modes – rotation or 

vectoring.𝛔𝐢 represents either clockwise or counter 
clockwise direction of rotation, ρ represents the radix 
of the number system and the shift sequence Sm, i 
depends on the coordinate system and the radix of 
number system. Sm, i affects the convergence of the 
algorithm. In rotation mode, the input vector is rotated 
by a specified angle, while in vectoring mode the 
algorithm rotates the input vector to the x-axis while 
recording the angle of rotation is required. The value of 
ai also changes according to the configuration. 
Depending on the mode of operation z and y are the 
steering variables in rotation and vectoring mode 
respectively. The length of the vector increases if 
required micro rotations are not perfect, so in order to 
maintain a constant vector length, the obtained results 

have to be scaled by the scale factor K and it is given 
by the equation.  

 

III. FFT ALGORITHM  

The fast Fourier transform (FFT) is a discrete Fourier 
transform algorithm which reduces the number of 
computations needed for points from to, where lg is 
the base-2 logarithm.  

FFTs were first discussed by Cooley and Tukey 
(1965), although Gauss had actually described the 
critical factorization step as early as 1805 (Bergland 
1969, Strang 1993). [2, 3, 4]. A discrete Fourier 
transform can be computed using an FFT by means 
of the Danielson-Lanczos lemma if the number of 
points is a power of two. If the number of points is not 
a power of two, a transform can be performed on sets 
of points corresponding to the prime factors of which 
is slightly degraded in speed. An efficient real Fourier 
transform algorithm or a fast Hartley transform (Brace 
well 1999) gives a further increase in speed by 
approximately a factor of two. Base-4 and base-8 fast 
Fourier transforms use optimized code, and can be 
20-30% faster than base-2 fast Fourier transforms. 
prime factorization is slow when the factors are large, 
but discrete Fourier transforms can be made fast for 
N=2, 3, 4, 5, 7, 8, 11, 13, and 16 using the Winograd 
transform algorithm [5][7].  

Fast Fourier transform algorithms generally fall into 
two classes:  

a) Decimation in time  

b) Decimation in frequency.  

The Cooley-Tukey FFT algorithm first rearranges the 
input elements in bit-reversed order, and then builds 
the output transform (decimation in time). [10]  

The N-point discrete Fourier transform is defined by  

 

The N-point FFT can be decomposed to repeated 
micro operations called butterfly operations. When 
the size of the butterfly is r, the FFT operation is 
called a radix-r FFT. For FFT hardware realization, if 
only one butterfly structure is implemented in the 
chip, this butterfly unit will execute all the calculations 
recursively. If parallel and pipeline processing 
techniques are used, an N point radix-r FFT can be 
executed by N/(r log N) clock cycles. This indicates 
that a radix-4 FFT can be four times faster than a 
radix-2 FFT. 
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Fig. 1 shows the general structure of the 64point radix-
4 FFT. For hardware realization of FFT, multi-bank 
memory and "in place" addressing strategy are often 
used to speed-up the memory access time and 
minimize the hardware consumption. For radix-r FFT, r 
banks of memory are needed to store data, and each 
memory bank could be two-port memory. With "in-
place" strategy, the r outputs of the butterfly can be 
written back to the same memory locations of the r 
inputs, and replace the old data. In this case, to realize 
parallel and pipelined FFT processing, an efficient 
addressing scheme is needed to avoid the data 
conflict. A popular addressing scheme for radix-r (r>2) 
was presented by Johnson, however due to the 
modulo-r addition, this method is slow and the speed 
depends on the length of FFT. 

 

Figure 1 RADIX-4 64 points FFT architecture 

IV. PROPOSED DESIGN  

In this paper, low power techniques are employed for 
power consumption using reconfigurable complex 
multiplier. Using  

Radix-2^5 algorithm, increase the computational 
speed, further reduce the chip area by three different 
processing elements (PE‟s) were proposed in this 
radix-2^5 64-point FFT/IFFT processor. The proposed 
architecture uses CORDIC algorithm to implement 
butterfly units to generate twiddle factor angle values 
and to reduce the truncation error. During each 
iteration of the CORDIC algorithm, the input angle is 
compared with the constant.  

The proposed architecture consists of a butterfly units, 
complex Booth multipliers, complex constant 
multipliers, first-in first-out (FIFO), control unit and 
multidata scaling  blocks. The butterfly units perform 
complex addition and subtraction of two input data x[n]  
and x[n + N/2]. Each input signals in the butterfly units 
come from previous stage and the FIFO, respectively. 
The butterfly unit 1 (BU1) conducts to only complex 
addition and subtraction. But, the butterfly unit 2 (BU2) 
includes twiddle factor W4 multiplication utilizing any 
multiplexers.  

The twiddle factor multiplication for FFT computation is 
conducted by fixed-width complex multipliers.  

The complex multiplication needs a look-up table 
(LUT) using read-only memory (ROM) to store the 
twiddle factor values. To reduce the critical path delay, 
the pipelined complex Booth multiplier was used in this 
FFT processor. Furthermore, the error compensation 
technique for the fixed-width multiplication was applied 
to reduce quantization error. The twiddle factor 
multiplication is conducted using fixed width complex 

multipliers. The twiddle factor values stored in the 
read-only memory (ROM) are used as the multiplicand 
in the complex Booth multiplier. The modified Booth 
algorithm is used widely for high speed multiplications. 
Since the maximum clock rate of the FFT processor 
depends on the critical path of the complex Booth 
multiplier, three level pipelined complex Booth 
multiplier is used for high-speed operation. Because 
quantization errors affect the signal-to-noise ratio 
(SNR) performance of the system, an error 
compensation method [9] is used to reduce the 
quantization error. The proposed FFT processor uses 
constant multipliers based on the canonical signed 
digit (CSD) representation for the complex 
multiplication arithmetic in stages 2, 3, and 7.  

The twiddle factor W8 has only one coefficient, but 
twiddle factors W16 and W32 have three and seven 
coefficients, respectively. Mostly the existing research 
is using complex Booth multipliers for the twiddle 
factor W32 multiplication. However, in our design, the 
complex CSD constant multiplier has been used for 
the twiddle factor W32 multiplication.  

Also, the common sub-expressions sharing (CSS) 
technique reduces the hardware complexity of the 
complex CSD constant multipliers [10]. The proposed 
FFT processor applied CSD constant multiplier 
instead of complex Booth multiplier at several stages. 

The radix 2^5 algorithm has same butterfly structure 
as radix 2, only the change is twiddle factor is 
available or each stage. The radix 2^5 algorithm can 
be expressed as follows.  

 

 

The twiddal factor can be expressed as follows: 



 

 

Yogini D. Borole1*, Dr. C. G. Dethe2 

w
w

w
.i

gn
it

e
d

.i
n

 

303 

 

 Implementation 64- Point FFT Using CORDIC Algorithm 

 

twiddle factor generation implemented using CORDIC 
algorithm as shown in figure 2. 

 

Figure 2.CORDIC algorithm structure for butterfly 
unit 

V. VHDL AND MATLAB SIMULATION 
RESULTS:  

64 point FFT Real and imaginary outputs are shown in 
figures which are compare using matlab and FPGA. 

 

Figure 3.Real and imaginary outputs for 64 point 
FFT 

VI. CONCLUSIONS  

In this paper Radix-2^5 FFT processor architecture is 
studied. For generation of twiddle factor CORDIC 
algorithm is used. Various parts of FFT architecture 
such as Butterfly unit, Control Unit, Delay-Feedback 
model are discussed. In the next phase of this paper 

actual Implementation of FFT processor on FPGA will 
be done using VHDL.  

Proposed research work emphases on the use of 
techniques to reduce the computational complexity of 
processor design and the algorithm used which result 
into improvement of the design significantly.  
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