

Yogini D. Borole1*, Dr. C. G. Dethe2

w
w

w
.i

g
n

it
e
d

.i
n

300

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

Implementation 64- Point FFT Using CORDIC
Algorithm

Yogini D. Borole1*, Dr. C. G. Dethe2

1
Department of E&TC, National Institute of Electronics & Information Technology, Aurangabad

2
Director, UGC -Academic Staff College, Nagpur

Abstract – This electronic document describes the method of implementation of Fast Fourier transform
processor: FFT using mixed CORDIC and radix algorithm. The basic result analyzed using this method is
power consumption and area. CORDIC is basically DSP application but here it is used for twiddle factor
multiplication. Radix 2^5 fft algorithm is used for reduction of complex multiplication. The proposed
calculation minimizes the quantity of multipliers. Outline illustrations demonstrate that the FFT planned
by the proposed system displays a lower equipment with more quality than existing techniques.

At first FFT usefulness is checked utilizing MATLAB lastly re-enacted and integrated utilizing Xilinx ISE
14.1.Besides CORDIC calculation is executed in both MATLAB and in Xilinx on Virtex-5. The fundamental
goal of this work is to get a territory proficient FFT and CORDIC without execution misfortune that could
be utilized as a piece of Signal preparing.

Keywords—FFT, Radix 2^5, MDF, CORDIC algorithm

---------------------------♦-----------------------------

1. INTRODUCTION

1.1 Overview

A Fast Fourier transform (FFT) is a fast computational
algorithm to compute the discrete Fourier transform
(DFT) and its inverse. The Fast Fourier Transform
does not refer to a new or different type of Fourier
transform. It refers to a very efficient algorithm for
computing the DFT. The time takes to perform a DFT
on a computer depends primarily on the number of
multiplications involved O (N2)) while FFT only needs
Nlog2(N).The central insight which leads to this
algorithm is the realization that a discrete Fourier
transform of a sequence of N points can be written in
terms of two discrete Fourier transforms of length N/2.
Therefore, if N is a power of 2, it is possible to
recursively apply this decomposition.

The main research idea of this work is optimize the
design of FFT processor. Area and power reduction is
the main objective of this work. So CORDIC algorithm
introduced with radix 2^5 FFT algorithm. The
Coordinate Rotation Digital Computer (CORDIC)
algorithmic, proposed by Jack Voider[1] can be utilized
for an extensive variety of capacities including certain
trigonometric, hyperbolic, straight and logarithmic
capacities. The Coordinate Rotation Digital Computer
(CORDIC) algorithmic, proposed by Jack Voider can
be utilized for an extensive variety of capacities
including certain trigonometric, hyperbolic, straight and
logarithmic capacities. CORDIC unit utilizes just moves

and add to figure these capacities. The CORDIC
algorithm provides an iterative method of performing
vector rotation mode, CORDIC is used for converting
one vector in rectangular form to another vector in
rectangular form. In the vector mode, it converts a
vector in rectangular form to polar form. Hence
CORDIC is used as an efficient way to realize
multiplication-free FFT [2].

The remainder of this project is organized as follows:

Section II and III review the CORDIC algorithm and
the general hardware architectures required to
implement FFT.

Section IV introduces the proposed radix and
CORDIC algorithm for 64 point FFT implementation.

Section V and VI presents the performance
evaluation and comparison and conclusion
respectively.

II. REVIEW OF CORDIC ALGORITHM

The key concept of CORDIC arithmetic is based on
the simple and ancient principles of two-dimensional
geometry. But the iterative formulation of a
computational algorithm for its implementation was
first described in 1959 by Jack E. Volder for the
computation of trigonometric functions, multiplication
and division [6][7][9]. CORDIC based computing

Yogini D. Borole1*, Dr. C. G. Dethe2

w
w

w
.i

gn
it

e
d

.i
n

301

 Implementation 64- Point FFT Using CORDIC Algorithm

received increased attentionin1971, when John
Walther showed that, by varying a few simple
parameters, it could be used as a single algorithm for
unified implementation of a wide range of elementary
transcendental functions involving logarithms,
exponentials, and square roots along with those
suggested by Volder [7].

CORDIC is attractive due to the simplicity of its
hardware implementation, since the same iterative
algorithm could be used for all the above mathematical
applications using the basic shift-add operations of the
form x ± y2-i.

The conventional method of implementation of rotation
transform is represented by the equations.

where (xin ,yin) and (xout ,yout) are the initial and
final coordinates of the vector respectively.

The hardware realization of these equations requires
four multiplications, two additions/subtractions and
accessing the table stored in the memory for
trigonometric coefficients. The CORDIC rotator
performs 2D rotation using a series of specific
incremental rotation angles selected so that each is
performed by a shift and add operation iteratively.

The three basic equations of CORDIC algorithm are:

Based on the value of m the algorithm can operate in
one of three configurations:

Linear (m = 0), Circular (m = 1) and Hyperbolic (m = -
1). Within each of these configurations the algorithm
functions in one of two modes – rotation or

vectoring.𝛔𝐢 represents either clockwise or counter
clockwise direction of rotation, ρ represents the radix
of the number system and the shift sequence Sm, i
depends on the coordinate system and the radix of
number system. Sm, i affects the convergence of the
algorithm. In rotation mode, the input vector is rotated
by a specified angle, while in vectoring mode the
algorithm rotates the input vector to the x-axis while
recording the angle of rotation is required. The value of
ai also changes according to the configuration.
Depending on the mode of operation z and y are the
steering variables in rotation and vectoring mode
respectively. The length of the vector increases if
required micro rotations are not perfect, so in order to
maintain a constant vector length, the obtained results

have to be scaled by the scale factor K and it is given
by the equation.

III. FFT ALGORITHM

The fast Fourier transform (FFT) is a discrete Fourier
transform algorithm which reduces the number of
computations needed for points from to, where lg is
the base-2 logarithm.

FFTs were first discussed by Cooley and Tukey
(1965), although Gauss had actually described the
critical factorization step as early as 1805 (Bergland
1969, Strang 1993). [2, 3, 4]. A discrete Fourier
transform can be computed using an FFT by means
of the Danielson-Lanczos lemma if the number of
points is a power of two. If the number of points is not
a power of two, a transform can be performed on sets
of points corresponding to the prime factors of which
is slightly degraded in speed. An efficient real Fourier
transform algorithm or a fast Hartley transform (Brace
well 1999) gives a further increase in speed by
approximately a factor of two. Base-4 and base-8 fast
Fourier transforms use optimized code, and can be
20-30% faster than base-2 fast Fourier transforms.
prime factorization is slow when the factors are large,
but discrete Fourier transforms can be made fast for
N=2, 3, 4, 5, 7, 8, 11, 13, and 16 using the Winograd
transform algorithm [5][7].

Fast Fourier transform algorithms generally fall into
two classes:

a) Decimation in time

b) Decimation in frequency.

The Cooley-Tukey FFT algorithm first rearranges the
input elements in bit-reversed order, and then builds
the output transform (decimation in time). [10]

The N-point discrete Fourier transform is defined by

The N-point FFT can be decomposed to repeated
micro operations called butterfly operations. When
the size of the butterfly is r, the FFT operation is
called a radix-r FFT. For FFT hardware realization, if
only one butterfly structure is implemented in the
chip, this butterfly unit will execute all the calculations
recursively. If parallel and pipeline processing
techniques are used, an N point radix-r FFT can be
executed by N/(r log N) clock cycles. This indicates
that a radix-4 FFT can be four times faster than a
radix-2 FFT.

Yogini D. Borole1*, Dr. C. G. Dethe2

w
w

w
.i

g
n

it
e
d

.i
n

302

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

Fig. 1 shows the general structure of the 64point radix-
4 FFT. For hardware realization of FFT, multi-bank
memory and "in place" addressing strategy are often
used to speed-up the memory access time and
minimize the hardware consumption. For radix-r FFT, r
banks of memory are needed to store data, and each
memory bank could be two-port memory. With "in-
place" strategy, the r outputs of the butterfly can be
written back to the same memory locations of the r
inputs, and replace the old data. In this case, to realize
parallel and pipelined FFT processing, an efficient
addressing scheme is needed to avoid the data
conflict. A popular addressing scheme for radix-r (r>2)
was presented by Johnson, however due to the
modulo-r addition, this method is slow and the speed
depends on the length of FFT.

Figure 1 RADIX-4 64 points FFT architecture

IV. PROPOSED DESIGN

In this paper, low power techniques are employed for
power consumption using reconfigurable complex
multiplier. Using

Radix-2^5 algorithm, increase the computational
speed, further reduce the chip area by three different
processing elements (PE‟s) were proposed in this
radix-2^5 64-point FFT/IFFT processor. The proposed
architecture uses CORDIC algorithm to implement
butterfly units to generate twiddle factor angle values
and to reduce the truncation error. During each
iteration of the CORDIC algorithm, the input angle is
compared with the constant.

The proposed architecture consists of a butterfly units,
complex Booth multipliers, complex constant
multipliers, first-in first-out (FIFO), control unit and
multidata scaling blocks. The butterfly units perform
complex addition and subtraction of two input data x[n]
and x[n + N/2]. Each input signals in the butterfly units
come from previous stage and the FIFO, respectively.
The butterfly unit 1 (BU1) conducts to only complex
addition and subtraction. But, the butterfly unit 2 (BU2)
includes twiddle factor W4 multiplication utilizing any
multiplexers.

The twiddle factor multiplication for FFT computation is
conducted by fixed-width complex multipliers.

The complex multiplication needs a look-up table
(LUT) using read-only memory (ROM) to store the
twiddle factor values. To reduce the critical path delay,
the pipelined complex Booth multiplier was used in this
FFT processor. Furthermore, the error compensation
technique for the fixed-width multiplication was applied
to reduce quantization error. The twiddle factor
multiplication is conducted using fixed width complex

multipliers. The twiddle factor values stored in the
read-only memory (ROM) are used as the multiplicand
in the complex Booth multiplier. The modified Booth
algorithm is used widely for high speed multiplications.
Since the maximum clock rate of the FFT processor
depends on the critical path of the complex Booth
multiplier, three level pipelined complex Booth
multiplier is used for high-speed operation. Because
quantization errors affect the signal-to-noise ratio
(SNR) performance of the system, an error
compensation method [9] is used to reduce the
quantization error. The proposed FFT processor uses
constant multipliers based on the canonical signed
digit (CSD) representation for the complex
multiplication arithmetic in stages 2, 3, and 7.

The twiddle factor W8 has only one coefficient, but
twiddle factors W16 and W32 have three and seven
coefficients, respectively. Mostly the existing research
is using complex Booth multipliers for the twiddle
factor W32 multiplication. However, in our design, the
complex CSD constant multiplier has been used for
the twiddle factor W32 multiplication.

Also, the common sub-expressions sharing (CSS)
technique reduces the hardware complexity of the
complex CSD constant multipliers [10]. The proposed
FFT processor applied CSD constant multiplier
instead of complex Booth multiplier at several stages.

The radix 2^5 algorithm has same butterfly structure
as radix 2, only the change is twiddle factor is
available or each stage. The radix 2^5 algorithm can
be expressed as follows.

The twiddal factor can be expressed as follows:

Yogini D. Borole1*, Dr. C. G. Dethe2

w
w

w
.i

gn
it

e
d

.i
n

303

 Implementation 64- Point FFT Using CORDIC Algorithm

twiddle factor generation implemented using CORDIC
algorithm as shown in figure 2.

Figure 2.CORDIC algorithm structure for butterfly
unit

V. VHDL AND MATLAB SIMULATION
RESULTS:

64 point FFT Real and imaginary outputs are shown in
figures which are compare using matlab and FPGA.

Figure 3.Real and imaginary outputs for 64 point
FFT

VI. CONCLUSIONS

In this paper Radix-2^5 FFT processor architecture is
studied. For generation of twiddle factor CORDIC
algorithm is used. Various parts of FFT architecture
such as Butterfly unit, Control Unit, Delay-Feedback
model are discussed. In the next phase of this paper

actual Implementation of FFT processor on FPGA will
be done using VHDL.

Proposed research work emphases on the use of
techniques to reduce the computational complexity of
processor design and the algorithm used which result
into improvement of the design significantly.

ACKNOWLEDGEMENT

The author would like to thank National Institute of
Electronics & Information Technology, Aurangabad
Research lab for supporting this work. Also very
thankful to Dr. C. G. Dethe for their valuable
guidance.

REFERENCES

Taesang Cho and Hannho lee, ―A High- Speed Low
Complexity Modified Radix- 2^5 FFT
Processor for High Rate WPAN Application‖
IEEE Trans. VLSI SYSTEMS, vol.21, no.1,
JANUARY 2013.

J. Lee and H. Lee, A high-speed two parallel
FFT/IFFT processor for OFDM systems,
IEICE Trans. Fundam., vol. E91-A, no. 4, pp.
1206– 1211, Apr. 2008.

Y. Lin, H. Liu, and C. Lee, ―A 1 -GS/s FFT/IFFT
processor for UWB applications,‖ IEEE J.
Solid-State Circuits, vol. 40, no. 8, pp.1726–
1735, Aug. 2005.

Y. Chen, Y. Tsao, Y. Wei, C. Lin, and C. Lee, ―An
indexed-scaling pipelined FFT processor for
OFDM-based WPAN applications,‖ IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 55,
no. 2, pp. 146–150, Feb. 2008.

M. Shin and H. Lee, ―A high-speed four-parallel FFT
processor for UWB applications, in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS), 2008,
pp. 960–963.

S. Tang, J. Tsai, and T. Chang, ―A 2.4- GS/s FFT
processor for OFDM based WPAN
applications, IEEE Trans. Circuits Syst. II,
Exp. Briefs, vol. 57, no. 6, pp. 451–455, Jun.
2010.

Huang and S. Chen, ―A green FFT processor with
2.5-GS/s for IEEE 802.15.3c (WPANs),‖ in
Proc. Int. Conf. Green Circuits Syst. (ICGCS),
2010, pp. 9–13.

T. Cho, H. Lee, J. Park, and C. Park, ―A high-speed
low-complexity modified radix-2^5 FFT
processor for gigabit WPAN applications, in

Yogini D. Borole1*, Dr. C. G. Dethe2

w
w

w
.i

g
n

it
e
d

.i
n

304

 Journal of Advances in Science and Technology
Vol. 12, Issue No. 25, (Special Issue) December-2016, ISSN 2230-9659

Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
2011, pp. 1259– 1262.

A. Cortes, I. Velez, and J. F. Sevillano, Radix FFTs:
Matrical representation and SDC/SDF pipeline
implementation,‖ IEEE Trans. Signal Process.,
vol. 57, no. 7, pp. 2824–2839, Jul. 2009.

K. Cho, K. Lee, J. Chung, and K. Parhi, ―Design of
low-error fixed width modified Booth multiplier,
IEEE Trans.Very Large Scale Integer. (VLSI)
Syst., vol. 12, no. 5, pp. 522–531, May 2004.

Corresponding Author

Yogini D. Borole*

Department of E&TC, National Institute of Electronics
& Information Technology, Aurangabad

E-Mail – yoginiborole@gmail.com

mailto:yoginiborole@gmail.com

