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Abstract – The purpose of this paper is to discuss numerical solutions of differential equations including 
the evolution, progress and types of differential equations. Special attention is given to the solution of 
differential equations by application of spline functions. Here we are interested in differential equation 
based problems and their solutions using polynomial and no polynomial splines of different orders. It 
contains crux of various recent research papers based on application of splines of different orders. 
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INTRODUCTION  

Differential equations are mathematically studied from 
several different perspectives, mostly concerned with 
their solutions—the set of functions that satisfy the 
equation. Time-dependent problems that are modeled 
by initial-boundary value problems for parabolic or 
hyperbolic partial differential equations can be treated 
with the boundary integral equation method. The ideal 
situation is when the right-hand side in the partial 
differential equation and the initial conditions vanish, 
the data are given only on the boundary of the domain, 
the equation has constant coefficients, and the domain 
does not depend on time. In this situation, the 
transformation of the problem to a boundary integral 
equation follows the same well-known lines as for the 
case of stationary or time-harmonic problems modeled 
by elliptic boundary value problems. The same main 
advantages of the reduction to the boundary prevail: 
Reduction of the dimension by one, and reduction of 
an unbounded exterior domain to a bounded 
boundary.  

There are, however, specific difficulties due to the 
additional time dimension: Apart from the practical 
problems of increased complexity related to the higher 
dimension, there can appear new stability problems. In 
the stationary case, one often has unconditional 
stability for reasonable approximation methods, and 
this stability is closely related to variational 
formulations based on the ellipticity of the underlying 
boundary value problem. For the description of the 
general principles, we consider only the simplest 
model problem of each type. We also assume that the 
right hand sides have the right structure for the 
application of a ―pure‖ boundary integral method: The 

volume sources and the initial conditions vanish, so 
that the whole system is driven by boundary sources. 

In the time dependent case, instabilities have been 
observed in practice, but due to the absence of 
ellipticity, the stability analysis is more difficult and 
fewer theoretical results are available. Like stationary 
or time-harmonic problems, transient problems can 
be solved by the boundary integral equation method. 
When the material coefficients are constant, a 
fundamental solution is known and the data are given 
on the boundary, the reduction to the boundary 
provides efficient numerical methods in particular for 
problems posed on unbounded domains.  

Such methods are widely and successfully being 
used for numerically modeling problems in heat 
conduction and diffusion, in the propagation and 
scattering of acoustic, electromagnetic and elastic 
waves, and in fluid dynamics. One can distinguish 
three approaches to the application of boundary 
integral methods on parabolic and hyperbolic initial-
boundary value problems: Space-time integral 
equations, Laplace-transform methods, and time-
stepping methods. Causality implies that the integral 
equations are of Volterra type in the time variable, 
and time invariance implies that they are of 
convolution type in time. Numerical methods 
constructed from these space-time boundary integral 
equations are global in time, i. e. they compute the 
solution in one step for the entire time interval. The 
boundary is the lateral boundary of the space-time 
cylinder and therefore has one dimension more than 
the boundary of the spatial domain. This increase in 
dimension at first means a substantial increase in 
complexity:  
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- To compute the solution for a certain time, one 
needs the solution for all the preceding times 
since the initial time.  

- The system matrix is much larger. - The 
integrals are higher-dimensional. For a 
problem with 3 space dimensions, the matrix 
elements in a Galerkin method can require 6-
dimensional integrals. While the increase in 
memory requirements for the storage of the 
solution for preceding times cannot completely 
be avoided, there are situations where the 
other two reasons for increased complexity are 
in part neutralized by special features of the 
problem:  

- The system matrix has a special structure 
related to the Volterra structure (finite 
convolution in time) of the integral equations. 
When low order basis functions in time are 
used, the matrix is of block triangular Toeplitz 
form, and for its inversion only one block - 
which has the size of the system matrix for a 
corresponding time independent problem - 
needs to be inverted.  

- When a strong Huyghens principle is valid for 
the partial differential equation, the integration 
in the integral representation is not extended 
over the whole lateral boundary of the space-
time cylinder, but only over its intersection with 
the surface of the backward light cone.  

This means firstly that the integrals are of the same 
dimensionality as for time-independent problems, and 
secondly that the dependence is not extended 
arbitrarily far into the past, but only up to a time 
corresponding to the time of traversal of the boundary 
with the fixed finite propagation speed. These 
―retarded potential integral equations‖ are of 
importance for the scalar wave equation in three space 
dimensions and to a certain extent for equations 
derived from them, in electromagnetics and 
electrodynamics. 

LITERATURE REVIEW:- 

Relativity handbooks and papers based on them, as 
well as science fiction productions exploiting their 
misleading physical predictions, have flourished ever 
since. Neither Einstein nor his followers worried about 
the disastrous impact the chosen dogmatic formulation 
of SRT would have upon human knowledge and 
progress in physics and technology: His a fortiori 
formulation of the light-speed principle and the 
concepts of space time and time dilation, have broken 
the logical relation between the typical concepts of 
space and time, motion and rest, and absolute and 
relative. 

English physicist Isaac Newton (1665) and German 
mathematician Gottfried Leibnitz (1674). The term 
differential equation was coined by Leibnitz in 1676 for 
a relationship between the two 

differentials dx and dy for the two variables x and y. 
Newton solved his first differential equation in 1676 by 
the use of infinite series, eleven years after his 
discovery of calculus in 1665. Leibnitz solved his first 
differential equation in 1693, the year in which Newton 
first published his results. Hence, 1693 marks the 
inception for the differential equations as a distinct field 
in mathematics (Bardo et. al., 2002).  

The different phases of 17th, 18th and 19th Centuries 
played some crucial role in the history of differential 
equations. In the year 1695 the problem of finding the 
general solution of what is now called Bernoulli‘s 
equation was proposed by Bernoulli and it was solved 
by Leibnitz and Johann Bernoulli by different 
methods. In further development 1724 was important 
to the early history of ordinary differential equations. 
Ordinary differential equation acquired it significance 
when it was introduced in 1724 by Jacopo Francesco, 
Count Ricatti of Venice in his work in acoustics. 
Further in the year of 1739 Leonhard Euler solves the 
general homogeneous linear ordinary differential 
equation with constant coefficients. L‘Hospital came 
up with separation of variables in 1750, and it is now 
the physicist‘s handiest tool for solving partial 
differential equations. Since its introduction in 1828, 
Green‘s functions have become a fundamental 
mathematical technique for solving boundary-value 
problems.  

In 1890 Poincare (Catto et. al., 2002). gave the first 
complete proof of the existence and uniqueness of a 
solution of the Laplace Equation for any continuous 
Dirichlet boundary condition. In 20th Century a lot of 
quality work has been done in the field of differential 
equations, but the major concern was the analytic and 
computational solution of differential equations. In last 
few decades numerical analysis of differential 
equations has become a major topic of study. In view 
of this, this thesis gives a small step towards the 
development of computational analysis of ordinary 
differential equations, which have lot of utilities in the 
field of science and engineering. Relativity handbooks 
and papers based on them, as well as science fiction 
productions exploiting their misleading physical 
predictions, have flourished ever since. Neither 
Einstein nor his followers worried about the disastrous 
impact the chosen dogmatic formulation of SRT 
would have upon human knowledge and progress in 
physics and technology: His a fortiori formulation of 
the light-speed principle and the concepts of space 
time and time dilation, have broken the logical relation 
between the typical concepts of space and time, 
motion and rest, and absolute and relative.  

The need to abolish the original significance of those 
concepts could never be proved. Nevertheless, the 
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breaking has violently penetrated the human 
consciousness for a century now.  

The absence of the principle of physical determination 
of equations in SRT has led to relativistic quantum 
theories deprived of a large amount of information on 
the sub-quantum structure of matter. For more than 65 
years nobody became aware of this fact. So much 
more that testifying and exploiting this information 
needed to develop new techniques.  

Instead of developing such techniques, physicists 
have asked for more and more powerful accelerators 
of quantum particles. Due to the absent information, 
they have not succeeded in understanding and 
systematizing the current data obtained by colliding 
ultra relativistic particles.  

Groups of experimenters who obtained brand new 
results have associated each of them to separate 
mathematical explanatory models that have hidden 
their common nature. Consequently, they could not 
refine their techniques in order to achieve real 
advanced technologies. Other radically new 
technologies remained beyond imagination.  

The relativism of the last century (unfairly claiming 
support from Einstein‘s SRT) continues successfully 
the dissolution of both scientific and common 
knowledge, with major consequences upon economy, 
society, etc. At least strangely, leaders in science and 
technology policy have opted to ignore this dramatic 
state of the affairs for at least the next fifty years. The 
trend to describe the whole physical universe, 
including the microcosm, in terms of geometry of a 
claimed physical space time and its quantum nature 
dominates , against its striking failure. For the 
description of the general principles, we consider only 
the simplest model problem of each type. We also 
assume that the right hand sides have the right 
structure for the application of a ―pure‖ boundary 
integral method: The volume sources and the initial 
conditions vanish, so that the whole system is driven 
by boundary sources. It has been found that, unlike 
the parabolic partial differential operator with its time-
independent energy and no regularizing property in 
time direction, the first kind boundary integral 
operators have a kind of anisotropic space-time 
ellipticity (Costabel, 1990; Arnold and Noon, 1989; 
Brown, 1989; Brown and Shen, 1993). This ellipticity 
leads to unconditionally stable and convergent 
Galerkin methods (Costabel, 1990; Arnold and Noon, 
1989; Hsiao and Saranen, 1993; Hebeker and Hsiao, 
1993).  

Because of their simplicity, collocation methods are 
frequently used in practice for the discretization of 
space-time boundary integral equations. An analysis of 
collocation methods for second-kind boundary integral 

equations for the heat equation was given by Costabel 
et al., 1987. Fourier analysis techniques for the 
analysis of stability and convergence of collocation 
methods for parabolic boundary integral equations, 
including first kind integral equations, have been 
studied more recently by Hamina and Saranen (1994) 
and by Costabel and Saranen (2000; 2001; 2003).  

The operational quadrature method for parabolic 
problems was introduced and analyzed by Lubich and 
Schneider (1992). For hyperbolic problems, the 
mathematical analysis is mainly based on variational 
methods as well (Bamberger and Ha Duong, 1986; 
Ha-Duong, 1990; Ha-Duong, 1996).  

There is now a lack of ellipticity which on one hand 
leads to a loss of an order of regularity in the error 
estimates. On the other hand, most coercivity 
estimates are based on a passage to complex 
frequencies, which may lead to stability constants 
that grow exponentially in time. Instabilities (that are 
probably unrelated to this exponential growth) have 
been observed, but their analysis does not seem to 
be complete (Becache, 1991; Peirce and Siebrits, 
1996; Peirce and Siebrits, 1997; Birgisson et al., 
1999).  

Analysis of variational methods exists for the main 
domains of application of space-time boundary 
integral equations: First of all for the scalar wave 
equation, where the boundary integrals are given by 
retarded potentials, but also for elastodynamics 
(Becache, 1993; Becache and Ha-Duong, 1994; 
Chudinovich, 1993c; Chudinovich, 1993b; 
Chudinovich, 1993a), piezoelectricity (Khutoryansky 
and Sosa, 1995), and for electrodynamics (Bachelot 
and Lange, 1995; Bachelot et al., 2001; Rynne, 1999; 
Chudinovich, 1997).  

RESEARCH METHODOLOGY 

Later workers such as Morgan (1952), Hansen 
(1964), Krzywoblocki (1963) and Wecker and Hayes 
(1960) investigated similarity methods by considering 
the governing equations first and only examining the 
boundary and initial conditions as a later step, if at 
cell. Another group of workers developed similarity 
methods by starting with a complete mathematical 
formulation and thus motivated to examine less 
complete (and more general) problems, see for 
example Coles (1962), Abbott and Kline (1960) and 
Gukhman (1965).  

An examination of these earlier works show that the 
initial problem statement as far as assumed 
completeness determined to a large extent the kind of 
mathematical approach employed. The more 
information that was known, the more direct was the 
method developed for finding a similarity solution and 
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at the same time, the less general were both the 
methods and the conclusions ( as regards ―general 
solutions‖ ).  

A partial differential equation (PDE) is called 
dispersive if, when no boundary conditions are 
imposed, its wave solutions spread out in space as 
they evolve in time. As an example 

consider . If we try a simple wave of 

the form , we see that it 

satisfies the equation if and only if . This is 
called the dispersive relation and shows that the 
frequency is a real valued function of the wave 
number.  

If we denote the phase velocity by we can write 

the solution as and notice that the 
wave travels with velocity k. Thus the wave propagates 
in such a way that large wave numbers travel faster 
than smaller ones. (Trying a wave solution of the same 

form to the heat equation , we obtain 
that the lj is complexed valued and the wave solution 
decays exponential in time.  

On the other hand the transport equation 

and the one dimensional wave equation 

are traveling waves with constant velocity.) 

If we add nonlinear effects and study , 
we will see that even the existence of solutions over 
small times requires delicate techniques. 

Going back to the linear equation, 

consider . For each fixed k the wave 

solution becomes . 
Summing over k (integrating) we obtain the solution to 

our problem  

Since we have that .  

Thus the conservation of the L
2
 norm (mass 

conservation or total probability) and the fact that high 
frequencies travel faster, leads to the conclusion that 
not only the solution will disperse into separate waves 
but that its amplitude will decay over time.  

Furthermore, they provide an excellent substitute in 
estimates that are known to fail on Lebesgue spaces. 
This is not entirely surprising, if we consider their 
analogy with Besov spaces, since modulation spaces 
arise essentially replacing dilation by modulation. 

The equations that we will investigate are: 

 

 

 

 

, 

where is a complex valued function on  
(the nonlinearity) is some scalar function of , 

and are complex valued functions on  The 
nonlinearities considered in this study have the 
generic form 

 

 

where ; here, we denoted by the set of 

entire functions with expansions of the form 

 

As important special cases, we highlight nonlinear it 
lies that are either power-like 

 

or exponential-like 

 

The nonlinearities considered have the advantage of 
being smooth. The corresponding equations having 
power-like nonlinearities pk are sometimes referred to 
as algebraic nonlinear (Schrodinger, wave, Klein-
Gordon) equations.  

ANALYSIS OF THE DATA:- 

A different approach in which particle methods were 
used for approximating solutions of the heat equation 
and related models (such as the Fokker-Planck 
equation and a Boltzmann-like equation :the Kac 
equation), was introduced by Russo (2003). 

In these works, the diffusion of the particles was 
described as a deterministic process in terms of a 
mean motion with a speed equal to the osmotic 
velocity associated with the diffusion process.  
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In a following work, the method was shown to be 
successful for approximating solutions to the two-
dimensional Navier-Stokes (NS) equation in an 
unbounded domain. In this setup, the particles were 
convected according to the velocity field while their 
weights evolved according to. the diffusion term in the 
vorticity formulation of the NS equations. 

Another deterministic approach for approximating 
solutions of the parabolic equations with particle 
methods was introduced by Degond and Mustieles 
(2000). Their so-called diffusion-velocity method was 
based on defining the convective field associated with 
the heat operator which then allowed the particles to 
convect in a standard way. 

For example, the one-dimensional heat equation 

 is rewritten as  where 
the velocity a(u) is taken as –ux/u. Particles carrying 
fixed masses will be then convicted with speed a(u). 
The convergence properties of the diffusion-velocity 
method were investigated, where short time existence 
and uniqueness of solutions for the resulting diffusion-
velocity transport equation were proved.  

The diffusion velocity method serves as the basic tool 
for the derivation of our particle methods in the 
dispersive world. 

We focus our attention on linear and nonlinear 
dispersive partial differential equations. Our model 
problem in the linear setup is the linear Airy equation,  

 

The success of particle methods in approximating the 
oscillatory solutions that develop in this dispersive 
equation, provide us with valuable insight regarding 
the potential embedded in our approach. 

CONCLUSION 

The existence theory in ID was given in and the 
analysis in 2D was recently announced in. Another 
interesting problem is the existence and uniqueness of 
the ground states, i.e. the solutions which minimize the 
total energy functional under the normalization 
constraint.  

For the most simple-looking equation, i.e. the SN 
equation without external potential, the existence of a 
unique spherically symmetric ground state in 3D was 

proven by Lieb and in any dimension was 
given. 

There is no global minimum of the energy functional 
for the repulsive SP equation without external potential 

since the infimum of its energy is always zero. When 
the Slater term is considered and in the absence of 
any external potential, the existence analysis of 
ground states in 3D was given in, and in particular the 
existence of a unique spherically symmetric ground 
state is proven in  for the attractive case. To our 
knowledge, so far the existence analysis of higher 
bound states remains open. 

Along the numerical front, self-consistent solutions of 
the SPS equation are important in the simulations of a 
quantum system. For example, time-independent SP 
equation was solved in for the Eigen states of the 
quantum system, and time-dependent spherically 
symmetric SP equation was considered in and time- 
dependent SN equation was treated in  with three 
kinds of symmetry: spherical, axial and translational 
symmetry.  

Most of the previous work apply Crank Nicholson 
time integration and finite difference for space 
discretization. Also, note that in general the ground 
states of the SPS equation will lose the symmetric 
profile due to the external potential and therefore one 
cannot obtain a reduced quasi-ID model as for the 
SN system, by studying which the SN equation was 
extensively investigated in . On the other hand, the 
computation of stationary states and dynamics of the 
NLS equation without Hartree potential, has been 
extensively studied. Among the numerical methods 
proposed in the literature, discretizations based on a 
gradient flow with discrete normalization (GFDN) 
show more efficient in finding the ground and excited 
states of NLS modeling the Bose-Einstein 
condensates (BEC).  

RESULTS & DISCUSSION 

Differential equations, such as whether or not 
solutions exist, and should they exist, whether the are 
unique. Applied mathematicians emphasize 
differential quations from applications, and in addition 
to existence/uniqueness questions, are also 
concerned with rigorously justifying methods for 
approximating solutions. Physicists and engineers 
are usually more interested in computing approximate 
solutions to differential equations. These solutions 
are then used to simulate celestial motions, simulate 
neurons, design bridges, automobiles, aircraft, 
sewers, etc. Often, these equations do not have 
closed form solutions and are solved using numerical 
methods. Mathematicians also study weak solutions 
(relying on weak derivatives), which are types of 
solutions that do not have to be differentiable 
everywhere. This extension is often necessary for 
solutions to exist, and it also results in more 
physically reasonable properties of solutions, such as 
shocks I hyperbolic (or wave) equations. Numerical 
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techniques to solve the boundary value problems 
include some of the following methods: 

1) These are initial value problem methods. In 
this method, we convert the given boundary 
value problem to an initial value problem by 
adding sufficient number of conditions at one 
end and adjust these conditions until the given 
conditions are satisfied at the other end. 

2) In finite difference method (FDM), functions 
are represented by their  values at certain grid 
points and derivatives are approximated 
through differences in these values. For the 
finite difference method, the domain under 
consideration is represented by a finite subset 
of points. These points are called ―nodal 
points‖ of the grid. This grid is almost always 
arranged in (uniform or non-uniform) 
rectangular manner. The differential equation 
is replaced by a set of difference equations 
which are solved by direct or iterative 
methods. 

3) In finite element method (FEM), functions are 
represented in terms of basic functions and 
the ODE is solved in its integral (weak) form. 
In this method the domain under consideration 
is partitioned in a finite set of elements. In this 
the differential equation is discretized by using 
approximate methods with the piecewise 
polynomial solution (Ch. Lubich, 2008).. 

4) In spline based methods, the differential 
equation is discretized by using approximate 
methods based on spline. The end conditions 
are derived for the definition of spline. The 
algorithm developed not only approximates the 
solutions, but their higher order derivatives as 
well. 
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