

Vijaysingh Digambar Gaikwad*

w
w

w
.i

g
n

it
e
d

.i
n

50

 Journal of Advances in Science and Technology
Vol. 14, Issue No. 1, June-2017, ISSN 2230-9659

An Analysis upon Various Algorithmic Solutions
in Algebraic Number Theory

Vijaysingh Digambar Gaikwad*

Assistant Professor, Dayanand Science College, Maharashtra

Abstract – Algebraic number theory studies algebraic properties of the ring of algebraic integers in a
number field. We describe various algebraic invariants of number fields, as well as their applications.
These applications relate to prime ramification, the finiteness of the class number, cyclotomic extensions,
and the unit theorem.

In this study we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on
aspects that are of interest from a purely mathematical point of view, and practical issues are largely
disregarded. We describe what has been done and, more importantly, what remains to be done in the area.
We hope to show that the study of algorithms not only increases our understanding of algebraic number
fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the
determination of Galois groups, the determination of the ring of integers of an algebraic number field, and
the computation of the group of units and the class group of that ring of integers.

---------------------------♦-----------------------------

INTRODUCTION

The main interest of algorithms in algebraic number
theory is that they provide number theorists with a
means of satisfying their professional curiosity. The
praise of numerical experimentation in number
theoretic research is as widely sung as purely
numerological investigations are indulged in, and for
both activities good algorithms are indispensable.
What makes an algorithm good unfortunately defies
definition—too many extra-mathematical factors affect
its practical performance, such as the skill of the
person responsible for its execution and the
characteristics of the machine that may be used.

The present study addresses itself not to the
researcher who is looking for a collection of well-tested
computational methods for use on his recently
acquired personal computer. Rather, the intended
reader is the perhaps imaginary pure mathematician
who feels that he makes the most of his talents by
staying away from computing equipment. It will be
argued that even from this perspective the study of
algorithms, when considered as objects of research
rather than as tools, offers rich rewards of a theoretical
nature.

The problems in pure mathematics that arise in
connection with algorithms have all the virtues of good
problems. They are of such a distinctly fundamental
nature that one is often surprised to discover that they
have not been considered earlier, which happens even
in well-trodden areas of mathematics; and even in

areas that are believed to be well-understood it occurs
frequently that the existing theory offers no ready
solutions, fundamental though the problems may be.
Solutions that have been found often need tools that at
first sight seem foreign to the statement of the problem.

Algebraic number theory has in recent times been
applied to the solution of algorithmic problems that, in
their formulations, do not refer to algebraic number
theory at all. That this occurs in the context of solving
diophantine equations does not come as a surprise,
since these lie at the very roots of algebraic number
theory. A better example is furnished by the seemingly
elementary problem of decomposing integers into prime
factors. Among the ingredients that make modern
primality tests work one may mention reciprocity laws in
cyclotomic fields, arithmetic in cyclic fields, the
construction of Hilbert class fields of imaginary
quadratic fields, and class number estimates of fourth
degree CM-fields. The best rigorously proved time
bound for integer factorization is achieved by an
algorithm that depends on quadratic fields, and the
currently most promising practical approach to the
same problem, the number field sieve, employs
"random" number fields of which the discriminants are
so huge that many traditional computational methods
become totally inapplicable. The analysis of many
algorithms related to algebraic number fields seriously
challenges our theoretical understanding, and one is
often forced to argue on the basis of heuristic
assumptions that are formulated for the occasion. It is
considered a relief when one runs into a standard
conjecture such as the generalized Riemann hypothesis

Vijaysingh Digambar Gaikwad*

w
w

w
.i

gn
it

e
d

.i
n

51

 An Analysis upon Various Algorithmic Solutions in Algebraic Number Theory

or Leopoldt's conjecture on the no vanishing of the p-
adic regulator.

In this study we will consider algorithms in algebraic
number theory for their own sake rather than with a
view to any of the above applications. The discussion
will be concentrated on three basic algorithmic
questions that one may ask about algebraic number
fields, namely, how to determine the Galois group of
the normal closure of the field, or, more generally, of
any polynomial over any algebraic number field; how
to find the ring of integers of the field; and how to
determine the unit group and the ideal class group of
that ring of integers. These are precisely the subjects
that are discussed in Algorithmic algebraic number
theory by M. Pohst and H. Zassenhaus (Cambridge,
1989), but our point of view is completely different.
Pohst and Zassenhaus present algorithms that "yield
good to excellent results for number fields of small
degree and not too large discriminant", but our attitude
will be decidedly and exclusively asymptotic. For the
purposes of the present study one algorithm is
considered better than another if, for each positive real
number N, it is at least N times as fast for all but
finitely many values of the input data. It is clear that
with this attitude we can make no claims concerning
the practical applicability of any of the results that are
achieved. In fact, following Archimedes one should be
able, on the basis of current physical knowledge, to
find an upper estimate for all sets of numerical input
data to which any algorithm will ever be applied, and
an algorithm that is faster in all those finitely many
instances may still be worse in our sense.

To some people the above attitude may seem absurd.
To the intended reader, who is never going to apply
any algorithm anyway, it comes as liberation and a
relief. Once he explicitly gives up all practical claims
he will realize that he can occupy himself with
algorithms without having to fear the bad dreams
caused by the messy details and dirty tricks that stand
between an elegant algorithmic idea and its practical
implementation. He will find himself in the platonic
paradise of pure mathematics, where a conceptual
and concise version of an algorithm is valued more
highly than an ad hoc device that speeds it up by a
factor of ten and where words have precise meanings
that do not change with the changing world. He will
never need to enter the dark factories that in his
imagination are populated by applied mathematicians,
where boxes full of numbers that they call matrices are
carried around and where true electronic computers
are fed with proliferating triple indices. And in his
innermost self he will know that in the end his own
work will turn out to have the widest application range,
exactly because it was not done with any specific
application in mind.

There is a small price to be paid for admission to this
paradise. Algorithms and their running times can only
be investigated mathematically if they are given exact
definitions, and this can apparently be done only if one

employs the terminology of theoretical computer
science, which our intended reader unfortunately does
not feel comfortable with either. It is only out of respect
for his feelings that I have not called this paper
Complexity of algorithms in algebraic number theory,
which would have described its contents more
accurately.

Although it is, from a rigorous mathematical point of
view, desirable that I define what I mean by an
algorithm and its running time, I will not do so. My
main excuse is that I do not know these definitions
myself. Even worse, I never saw a treatment of the
appropriate theory that is precise, elegant, and
convenient to work with. It would be a laudable
enterprise to fill this apparent gap in the literature. In
the meantime, I am happy to show by example that one
can avoid paying the admission price, just as not all
algebraists are experts on set theory or algebraic
geometers on category theory. The intuitive
understanding that one has of algorithms and running
times, or of sets and categories, is amply sufficient.
Exact definitions appear to be necessary only when
one wishes to prove that algorithms with certain
properties do not exist, and theoretical computer
science is notoriously lacking in such negative results.
The reader who wishes to provide his own definitions
may wish to consult for an account of the pitfalls to be
avoided. He should bear in mind that all theorems in
the present study should become formal consequences
of his definitions, which makes his task particularly
academic.

My intended reader may have another allergy, namely,
for constructive mathematics, in which purely existential
proofs and the law of the excluded middle are not
accepted. This has only a superficial relationship to
algorithmic mathematics. Of course, it often happens
that one can obtain a good algorithm by just
transcribing an essentially constructive proof, but such
algorithms do not tend to be the most interesting ones;
many of them are mentioned in §2. In the design and
analysis of algorithms one gladly invokes all the help
that existing pure mathematics has to offer and often
some not-yet-existing mathematics as well.

PRELIMINARIES

Algorithms and complexity - It is assumed that the
reader has an intuitive understanding of the notion of
an algorithm as being a recipe that given one finite
sequence of nonnegative integers, called the input
data, produces another, called the output. Formally, an
algorithm may be defined as a Turing machine, but for
several of our results it is better to choose as our
"machine model" an idealized computer that is more
realistic with respect to its running time, which is
another intuitively clear notion that we do not define.
We refer to and the literature given there for a further
discussion of these points.

Vijaysingh Digambar Gaikwad*

w
w

w
.i

g
n

it
e
d

.i
n

52

 Journal of Advances in Science and Technology
Vol. 14, Issue No. 1, June-2017, ISSN 2230-9659

The length of a finite sequence of nonnegative

integers is defined to be . It
must informally be thought of as proportional to the
number of bits needed to spell out the nt in binary. By
analyzing the complexity of an algorithm we mean in
this study finding a reasonably sharp upper bound for
the running time of the algorithm expressed as a
function of the length of the input data. This should,
more precisely, be called time complexity, to
distinguish it from space complexity. An algorithm is
said to be polynomial-time or good if its running time

is , where is the length of the input.
Studying the complexity of a problem means finding an
algorithm for that problem of the smallest possible
complexity. In the present study we consider the
complexity analysis complete when a good algorithm
for a problem has been found, and we will not be
interested in the value of the 0-constant. Informally, a
problem has a good algorithm if an instance of the
problem is almost as easily solved as it is formulated.

Sometimes we will refer to a probabilistic algorithm,
which is an algorithm that may use a random number
generator for drawing random bits. One formalization
of this is a nondeterministic Turing machine. Unless
we use the word probabilistic, we do not allow the use
of random number generators, and if we wish to
emphasize this we talk of deterministic algorithms. In
the case of a probabilistic algorithm, the running time
and the output are not determined by the input alone,
but both have, for each fixed value of the input data, a
distribution. The expected running time of a
probabilistic algorithm is the expectation of the running
time for a given input. Studying the complexity of a
probabilistic algorithm means finding an upper bound
for the expected running time as a function of the
length of the input. For a few convenient rules that can
be used for this purpose we refer to. A probabilistic
algorithm is called good if its expected running time

is , where / is the length of the input.

Parallel algorithms have not yet played any role in
algorithmic number theory, and they will not be
considered here.

Many results in this study assert that "there exists" an
algorithm with certain properties. In all cases, such an
algorithm can actually be exhibited, at least in
principle.

All 0-constants are absolute and effectively
computable unless indicated otherwise.

Encoding data - As stated above, the input and the
output of an algorithm consist of finite sequences of
nonnegative integers. However, in the mathematical
practice of thinking and writing about algorithms one
prefers to work with mathematical concepts rather than
with sequences of nonnegative integers that encode

them in some manner. Thus, one likes to say that the
input of an algorithm is given by an algebraic number
field rather than by the sequence of coefficients of a
polynomial that defines the field; and it is both shorter
and clearer to say that one computes the kernel of a
certain endomorphism of a vector space than that one
determines a matrix of which the columns express a
basis for that kernel in terms of a given basis of the
vector space. To justify such a concise mode of
expression we have to agree on a way of encoding
entities such as number fields, vector spaces, and
maps between them by means of finite sequences of
nonnegative integers. That is one of the purposes of
the remainder of this section. Sometimes there is one
obvious way to do the encoding, but often there are
several, in which case the question arises whether
there is a good algorithm that passes from one
encoding to another. When there is, we will usually not
distinguish between the encodings, although for
practical purposes they need not be equivalent.

We shall see that the subject of encoding mathematical
entities suggests several basic questions, but we will
not pursue these systematically. We shall not do much
more than what will be needed in later sections.

Elementary arithmetic - By Z we denote the ring of
integers. Adding a sign bit we can clearly use
nonnegative integers to represent all integers. The
traditional algorithms for addition and subtraction take

time , where is the length of the input. The ordinary
algorithms for multiplication and division with remainder,
as well as the Euclidean algorithm for the computation

of greatest common divisors, have running time .
With the help of more sophisticated methods this can

be improved to for .

An operation that is not known to be doable by means
of a good algorithm is decomposing a positive integer
into prime numbers , but there is a good probabilistic
algorithm for the related problem of deciding whether a
given integer is prime. No good algorithms are known
for the problem of recognizing square free numbers and
the problem of finding the largest square dividing a
given positive integer, even when the word "good" is
given a less formal meaning.

For some algorithms a prime number p is part of the
input. In such a case, the prime is assumed to be
encoded by it rather than that, for example, n stands for
the nth prime. Since we know no good deterministic
algorithm for recognizing primes, it is natural to ask
what the algorithm does if p is not prime or at least not
known to be prime. Some algorithms may discover that
p is nonprime, either because a known property of
primes is contradicted in the course of the
computations, or because the algorithm spends more
time than it should; such algorithms may be helpful as
primarily tests. Other algorithms may even give a

Vijaysingh Digambar Gaikwad*

w
w

w
.i

gn
it

e
d

.i
n

53

 An Analysis upon Various Algorithmic Solutions in Algebraic Number Theory

nontrivial factor of p, which may make them applicable
as integer factoring algorithms. For both types of
algorithms, one can ask what can be deduced if the
algorithm does appear to terminate successfully. Does
this assist us in proving that p is prime? What do we
know about the output when we do not assume that p
is prime? An algorithm for which this question has not
been answered satisfactorily is Schoofs algorithm for
counting the number of points on an elliptic curve over
a finite field.

Linear algebra - Let F be a field, and suppose that
one has agreed upon an encoding of its elements, as
is the case when F is the field Q of rational numbers or
the field Fp for some prime number p . Giving a finite-
dimensional vector space over F simply means giving
a nonnegative integer n , which is the dimension of the
vector space. This number n is to be given in unary,
i.e., as a sequence 1, 1, ... , 1 of n ones, so that the
length of the encoding is at least n. This is because
almost any algorithm related to a vector space of
dimension n takes time at least n. The elements of
such a vector space are encoded as sequences of n
elements of F. Homomor- phisms between vector
spaces are encoded as matrices. A subspace of a
vector space can be encoded as a sequence of
elements that spans the subspace, or as a sequence
of elements that forms a basis of the subspace, or as
the kernel of a homomorphism from the vector space
to another one. For all fields F that we shall consider
the traditional algorithms from linear algebra, which
are based on Gaussian elimination, are polynomial-
time: algorithms that pass back and forth between
different representations of subspaces, algorithms that
decide inclusion and equality of subspaces, that form
sums and intersections of sub- spaces, algorithms that
construct quotient spaces, direct sums, and tensor
products, algorithms for computing determinants and
characteristic polynomials of endomorphisms, and
algorithms that decide whether a given homomorphism
is invertible and if so construct its inverse. The proofs
are straightforward, the main problem being to find
upper bounds for the sizes of the numbers that occur
in the computations, for example when F = Q.

If one applies any of these algorithms to F = Z//pZ
without knowing that p is prime, then one either finds a
nontrivial divisor of p because some division by a
nonzero element fails, or the algorithm performs
successfully as if F were a field. In the latter case it is
usually easy to interpret the output of the algorithm in
terms of free Z/pZ-modules, thus avoiding the
assumption that p be prime.

Rings - We use the convention that rings have unit
elements, that a subring has the same unit element,
and that ring homomorphisms preserve the unit
element. The characteristic char of a ring A is the
nonnegative integer that generates the kernel of the

unique ring homomorphism . The group of units

of a ring A is denoted by . All rings in this study are
supposed to be commutative.

Almost any ring that we need to encode in this study
has an additive group that is either finitely generated
or a finite-dimensional vector space over Q; for
exceptions. Such a ring A is encoded by giving its
underlying abelian group together with the
multiplication map . It is straightforward to
decide in polynomial time whether the multiplication
map satisfies the ring axioms.

Ideals are encoded as subgroups or, equivalently, as
kernels of ring homomorphisms. There are good
algorithms for computing the sum, product, and
intersection of ideals, as well as the

ideal for given I and J, and the
quotient ring of A modulo a given ideal.

A polynomial over a ring is always supposed to be
given by means of a complete list of its coefficients,
including the zero coefficients; thus we do not work with
sparse polynomials of a very high degree.

Most finite rings that have been encountered in
algorithmic number theory "try to be fields" in the sense
that one is actually happy to find a zero-divisor in the
ring. This applies to the way they occur in §4 and also
to the application of finite rings in primality testing.
Nevertheless, it seems of interest to study finite rings
from an algorithmic point of view for their own sake.
Testing whether a given finite ring is local can be done
by a good probabilistic algorithm, but finding the
localizations looks very difficult. Testing whether it is
reduced or a principal ideal ring also looks very difficult,
but there may be a good algorithm for deciding whether
it is quasi-Frobenius. I do not know whether
isomorphism can be tested in polynomial time. Many
difficulties are already encountered for finite rings that
are F^-algebras for some prime number p. Two finite
etale Fp-algebras can be tested for isomorphism in
polynomial time, but there is no known good
deterministic algorithm for finding the isomorphism if it
exists; if they are fields, there is, but the proof depends
on ring theory.

Local fields - A local field is a locally compact,
nondiscrete topological field. Such a field is
topologically isomorphic to the field R of real numbers,
or to the field C of complex numbers, or, for some
prime number p, to a finite extension of the field Qp of
p-adic numbers, or, for some finite field E, to the field
E((t)) of formal Laurent series over E. A local field is
uncountable, which implies that we have to be satisfied
with specifying its elements only to a certain precision.
The discussion below is limited to the case that the field
is non-archimedean, i.e., not isomorphic to R or C.

The complexity theory of local fields has not been
developed as systematically as one might expect on
the basis of their importance in number theory. The first
thing to do is to develop algorithms for factoring
polynomials in one variable to a given precision; and §4
below. Here the incomplete solution of the
corresponding problem over finite fields causes a

Vijaysingh Digambar Gaikwad*

w
w

w
.i

g
n

it
e
d

.i
n

54

 Journal of Advances in Science and Technology
Vol. 14, Issue No. 1, June-2017, ISSN 2230-9659

difficulty; we are forced to admit probabilistic

algorithms, or to allow the running time to be times
polynomial time, where p denotes the characteristic

RINGS OF INTEGERS

In this section we consider the following problem and
its complexity.

Problem-1 : Given an algebraic number field K,
determine its ring of integers

Constructing an order in K, we see that this problem is
equivalent to the following one.

Problem-2. Given an order A in a number field K,
determine the ring of integers of K.

Much of the literature on this problem assumes that

the given order is an equation order , and it is true
that equation orders offer a few advantages in the
initial stages of several algorithms. It may be that in
many practical circumstances one never gets beyond
these initial stages , but in the worst case—which is
what we are concerned with when we estimate the
complexity of a problem—these advantages quickly
disappear as the algorithm proceeds. For this reason
we make no special assumptions about A except that
it is an order.

Most of what we have to say about Problem 2 also
applies to the following more general problem.

Problem-3. Given a commutative ring A of which the

additive group is isomorphic to for some n , and that
has a no vanishing discriminant over Z, determine the

maximal order in The main result on Problem
1, which is due to Chistov, is a negative one.

Theorem-1. Under deterministic polynomial time
reductions, Problem 1 is equivalent to the problem of
finding the largest square factor of a given positive
integer.

The problem of finding the largest square factor of a
given positive integer m is easily reduced to Problem 1
by considering the number field For the
opposite reduction, which in computer science
language is a "Turing" reduction, we refer to the
discussion following Theorem 2 below.

Since there is no known algorithm for finding the
largest square factor of a given integer m that is
significantly faster than factoring m, Theorem 1 shows
that Problem 1 is currently intractable. More seriously,
even if someone gives us , we are not able to
recognize it in polynomial time, even if probabilistic
algorithms are allowed. Deciding whether the given

order A in Problem 2 equals is currently an

infeasible problem, just as deciding whether a given
positive integer is squarefree is infeasible. This is not
just true in theory, it is also true in practice.

One possible conclusion is that is not an object that
one should want to work with in algorithms. It may very

well be that whenever is needed one can just as well
work with an order A in K, and assume that A

equals until evidence to the contrary is obtained.
This may happen, for example, when a certain
nonzero ideal of A is found not to be invertible; in that
case one can, in polynomial time, construct an order A'

in K that strictly contains A and proceed with instead
of A .

If it indeed turns out to be wise to avoid working

with , then it is desirable that more attention be given
to general orders, both algorithmically and theoretically.
This is precisely what has happened in the case of
quadratic fields.

The order A equals if and only if all of its nonzero
prime ideals p are nonsingular; here we call p

nonsingular if the local ring is a discrete valuation

ring, which is equivalent to . One may

wonder, if it is intractable to find , can one at least find
an order in K containing A of which the singularities are
bounded in some manner? One result of this sort is
given below in Theorem 3; it implies that given A , one
can find an order B in K containing Asuch that all

singularities of B are plane singularities, i.e.,

satisfy

The geometric terminology just used should remind us
of a situation in which there does exist a good method
for finding the largest square factor, namely, if we are
dealing with polynomials in one variable over a field.
Thus, Theorem 1 suggests that, for a finite field E,
finding the integral closure of the polynomial ring E[t] in
a given finite extension of E(t) is a tractable problem,
and results of this nature have indeed been obtained. In
geometric language, this means that it is feasible to
resolve the singularities of a given irreducible algebraic
curve over a given finite field. The corresponding
problem over fields of characteristic zero has been
considered as well , and one may wonder whether the
geometric techniques that have been proposed can
also be used in the context of Problem 2. In any case,
we can formulate Problem 2 geometrically by asking for
the resolution of the singularities of a given irreducible
arithmetic curve.

Theorem 2. There is a good algorithm that given K and

A as above, as well as an integer , determines an

order B in K that contains for each prime number p
that divides q exactly once.

Vijaysingh Digambar Gaikwad*

w
w

w
.i

gn
it

e
d

.i
n

55

 An Analysis upon Various Algorithmic Solutions in Algebraic Number Theory

To prove this, one first observes that it suffices to
exhibit a good algorithm that given K, A and q either
finds B as in the statement of the theorem, or finds a

nontrivial factorization . Namely, in the latter
case one can precede recursively with q\ and q2 to find
orders B1, B2, and one lets B be the ring generated by
Bx and B2.

To find B or qx, q2, one applies the algorithm outlined
above, with a few changes. The first change is that
one starts by checking that q is not divisible by any

prime number ; if it is, then either one finds a
nontrivial splitting of q, or q is a small prime number
and one can apply the earlier algorithm. So let it now

be assumed that q has no prime factors , and

that The second change is that one replaces, in

the above algorithm, p and everywhere by q and .
This affects the linear algebra routines, which are only
designed to work for vector spaces over fields.
However, they work just as well for modules over a

ring , until some division in fails, in which case
one obtains a nontrivial factor qx of q. The third change

is that should now be calculated as the "radical of
the trace form," i.e., as the kernel of the Z/qZ-linear
map that sends x to the map
sending y to Tr(jcy), where is the trace
map. If q is a prime number exceeding n then this is
the same r as above.

One can show that the modified algorithm has the
desired properties. This concludes our sketch of the
proof of Theorem 2.

Using Theorem 2 we can complete the proof of
Theorem 1. Namely, suppose that one has an
algorithm that determines the largest square divisor of
any given positive integer. Calling this algorithm a few
times, one can determine the largest square free
number q for which q

2
 divides the discriminant of A .

Applying the algorithm of Theorem 2 to q one obtains

an order B that contains for each prime p for which

p
2
 divides the discriminant of A , so that

We now formulate a result that also gives information
about the local structure of B at primes p for which p

2

divides q . Let A be an order in a number field K, and
let q be a positive integer. We call A nonsingular at q if
each prime ideal of A containing q is nonsingular. We

call A tame at q if for each prime ideal of A containing
q there exist an unramified extension R of the ring Zp

of p-adic integers, where , a positive

integer e that is not divisible by p , and a unit ,
such that there is an isomorphism

 of Zp-algebras. As a partial
justification of the terminology, we remark that for
prime q the order A is tame at q if and only if each
prime ideal of A containing q is nonsingular and
tamely ramified over q ; this follows from a well-known
structure theorem for tamely ramified extensions of Zq.
If A is tame at q and p is a prime ideal of A containing

q, then is nonsingular if and only if

either divides q exactly once or the

number e above equals 1, and otherwise is a plane
singularity.

Theorem 3. There is a good algorithm that, given an
order A in a number field K of degree n, finds an order
B in K containing A and a sequence of pairwise

coprime divisors qi, , of the discriminant of B,
such that

1. B is tame at ;

2. All prime numbers dividing q exceed n;

3. B is nonsingular at all prime numbers p that
does not divide q.

This follows from a closer analysis of the algorithm of
Theorem 2. Using this theorem and the properties of
tameness, one can deduce the following result, which

expresses that one can approximate as closely as
can be expected on the basis of Theorem 1.

CONCLUSION

In summary, using the tools gained via abstract
algebra, we are able to take on a different field of
mathematics, extending what the reader might already
be familiar with known as elementary number theory.
We created an abstract algebra analogue to a familiar
theorem, and shed more light on its properties.

REFERENCES

Gabor Ivanyos, Marek Karpinski, Lajos Ronyai, and
Nitin Saxena (2008). Trading GRH for
algebra: algorithms for factoring polynomials
and related structures. CoRR, abs/0811.3165

H.Cohen (1993). A course in computational algebraic
number theory, Springer-Verlag, Berlin, MR
94i:11105

H.P.F. Swinnerton (2001). Dyer. A Brief Guide to
Algebraic Number Theory. University Press
of Cambridge.

Harper, M., and Murty, R., Euclidean rings of algebraic
integers, Canadian Journal of Mathematics,
56(1), (2004), pp. 71-76.

Ono Takashi (1990). An Introduction to Algebraic
Number Theory. Plenum Publishing
Corporation.

S. Lang (1964). Algebraic numbers, Addison-Wesley
Publishing Co., Inc., Reading, Mass.-Palo
Alto-London, MR 28 #3974

Vijaysingh Digambar Gaikwad*

w
w

w
.i

g
n

it
e
d

.i
n

56

 Journal of Advances in Science and Technology
Vol. 14, Issue No. 1, June-2017, ISSN 2230-9659

Serge Lang (2002). Algebra, revised 3rd ed. Springer-
Verlag.

Steve Chien and Alistair Sinclair (2004). Algebras with
Polynomial Identities and Computing the
Determinant. In FOCS, pages 352-361.

Victor Shoup (2009). A Computational Introduction to
Number Theory and Algebra. Cambridge
University Press, New York, Available from
http://shoup.net/ntb/. 19

W. Bosma, J. Cannon, and C. Playoust (1997). The
Magma algebra system. I. The user
language, J. Symbolic Comput. 24, no. 3-4,
235-265, Computational algebra and
number theory (London, 1993). MR 1 484-
478

Corresponding Author

Vijaysingh Digambar Gaikwad*

Assistant Professor, Dayanand Science College,
Maharashtra

E-Mail – vijaysinhgaikwad0@gmail.com

mailto:vijaysinhgaikwad0@gmail.com

