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Abstract – Algebraic number theory studies algebraic properties of the ring of algebraic integers in a 
number field. We describe various algebraic invariants of number fields, as well as their applications. 
These applications relate to prime ramification, the finiteness of the class number, cyclotomic extensions, 
and the unit theorem. 

In this study we discuss the basic problems of algorithmic algebraic number theory. The emphasis is on 
aspects that are of interest from a purely mathematical point of view, and practical issues are largely 
disregarded. We describe what has been done and, more importantly, what remains to be done in the area. 
We hope to show that the study of algorithms not only increases our understanding of algebraic number 
fields but also stimulates our curiosity about them. The discussion is concentrated of three topics: the 
determination of Galois groups, the determination of the ring of integers of an algebraic number field, and 
the computation of the group of units and the class group of that ring of integers. 

---------------------------♦----------------------------- 

INTRODUCTION 

The main interest of algorithms in algebraic number 
theory is that they provide number theorists with a 
means of satisfying their professional curiosity. The 
praise of numerical experimentation in number 
theoretic research is as widely sung as purely 
numerological investigations are indulged in, and for 
both activities good algorithms are indispensable. 
What makes an algorithm good unfortunately defies 
definition—too many extra-mathematical factors affect 
its practical performance, such as the skill of the 
person responsible for its execution and the 
characteristics of the machine that may be used. 

The present study addresses itself not to the 
researcher who is looking for a collection of well-tested 
computational methods for use on his recently 
acquired personal computer. Rather, the intended 
reader is the perhaps imaginary pure mathematician 
who feels that he makes the most of his talents by 
staying away from computing equipment. It will be 
argued that even from this perspective the study of 
algorithms, when considered as objects of research 
rather than as tools, offers rich rewards of a theoretical 
nature. 

The problems in pure mathematics that arise in 
connection with algorithms have all the virtues of good 
problems. They are of such a distinctly fundamental 
nature that one is often surprised to discover that they 
have not been considered earlier, which happens even 
in well-trodden areas of mathematics; and even in 

areas that are believed to be well-understood it occurs 
frequently that the existing theory offers no ready 
solutions, fundamental though the problems may be. 
Solutions that have been found often need tools that at 
first sight seem foreign to the statement of the problem. 

Algebraic number theory has in recent times been 
applied to the solution of algorithmic problems that, in 
their formulations, do not refer to algebraic number 
theory at all. That this occurs in the context of solving 
diophantine equations does not come as a surprise, 
since these lie at the very roots of algebraic number 
theory. A better example is furnished by the seemingly 
elementary problem of decomposing integers into prime 
factors. Among the ingredients that make modern 
primality tests work one may mention reciprocity laws in 
cyclotomic fields, arithmetic in cyclic fields, the 
construction of Hilbert class fields of imaginary 
quadratic fields, and class number estimates of fourth 
degree CM-fields. The best rigorously proved time 
bound for integer factorization is achieved by an 
algorithm that depends on quadratic fields, and the 
currently most promising practical approach to the 
same problem, the number field sieve, employs 
"random" number fields of which the discriminants are 
so huge that many traditional computational methods 
become totally inapplicable. The analysis of many 
algorithms related to algebraic number fields seriously 
challenges our theoretical understanding, and one is 
often forced to argue on the basis of heuristic 
assumptions that are formulated for the occasion. It is 
considered a relief when one runs into a standard 
conjecture such as the generalized Riemann hypothesis 
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or Leopoldt's conjecture on the no vanishing of the p-
adic regulator. 

In this study we will consider algorithms in algebraic 
number theory for their own sake rather than with a 
view to any of the above applications. The discussion 
will be concentrated on three basic algorithmic 
questions that one may ask about algebraic number 
fields, namely, how to determine the Galois group of 
the normal closure of the field, or, more generally, of 
any polynomial over any algebraic number field; how 
to find the ring of integers of the field; and how to 
determine the unit group and the ideal class group of 
that ring of integers. These are precisely the subjects 
that are discussed in Algorithmic algebraic number 
theory by M. Pohst and H. Zassenhaus (Cambridge, 
1989), but our point of view is completely different. 
Pohst and Zassenhaus present algorithms that "yield 
good to excellent results for number fields of small 
degree and not too large discriminant", but our attitude 
will be decidedly and exclusively asymptotic. For the 
purposes of the present study one algorithm is 
considered better than another if, for each positive real 
number N, it is at least N times as fast for all but 
finitely many values of the input data. It is clear that 
with this attitude we can make no claims concerning 
the practical applicability of any of the results that are 
achieved. In fact, following Archimedes  one should be 
able, on the basis of current physical knowledge, to 
find an upper estimate for all sets of numerical input 
data to which any algorithm will ever be applied, and 
an algorithm that is faster in all those finitely many 
instances may still be worse in our sense. 

To some people the above attitude may seem absurd. 
To the intended reader, who is never going to apply 
any algorithm anyway, it comes as liberation and a 
relief. Once he explicitly gives up all practical claims 
he will realize that he can occupy himself with 
algorithms without having to fear the bad dreams 
caused by the messy details and dirty tricks that stand 
between an elegant algorithmic idea and its practical 
implementation. He will find himself in the platonic 
paradise of pure mathematics, where a conceptual 
and concise version of an algorithm is valued more 
highly than an ad hoc device that speeds it up by a 
factor of ten and where words have precise meanings 
that do not change with the changing world. He will 
never need to enter the dark factories that in his 
imagination are populated by applied mathematicians, 
where boxes full of numbers that they call matrices are 
carried around and where true electronic computers 
are fed with proliferating triple indices. And in his 
innermost self he will know that in the end his own 
work will turn out to have the widest application range, 
exactly because it was not done with any specific 
application in mind. 

There is a small price to be paid for admission to this 
paradise. Algorithms and their running times can only 
be investigated mathematically if they are given exact 
definitions, and this can apparently be done only if one 

employs the terminology of theoretical computer 
science, which our intended reader unfortunately does 
not feel comfortable with either. It is only out of respect 
for his feelings that I have not called this paper 
Complexity of algorithms in algebraic number theory, 
which would have described its contents more 
accurately. 

Although it is, from a rigorous mathematical point of 
view, desirable that I define what I mean by an 
algorithm and its running time, I will not do so. My 
main excuse is that I do not know these definitions 
myself. Even worse, I never saw a treatment of the 
appropriate theory that is precise, elegant, and 
convenient to work with. It would be a laudable 
enterprise to fill this apparent gap in the literature. In 
the meantime, I am happy to show by example that one 
can avoid paying the admission price, just as not all 
algebraists are experts on set theory or algebraic 
geometers on category theory. The intuitive 
understanding that one has of algorithms and running 
times, or of sets and categories, is amply sufficient. 
Exact definitions appear to be necessary only when 
one wishes to prove that algorithms with certain 
properties do not exist, and theoretical computer 
science is notoriously lacking in such negative results. 
The reader who wishes to provide his own definitions 
may wish to consult  for an account of the pitfalls to be 
avoided. He should bear in mind that all theorems in 
the present study should become formal consequences 
of his definitions, which makes his task particularly 
academic. 

My intended reader may have another allergy, namely, 
for constructive mathematics, in which purely existential 
proofs and the law of the excluded middle are not 
accepted. This has only a superficial relationship to 
algorithmic mathematics. Of course, it often happens 
that one can obtain a good algorithm by just 
transcribing an essentially constructive proof, but such 
algorithms do not tend to be the most interesting ones; 
many of them are mentioned in §2. In the design and 
analysis of algorithms one gladly invokes all the help 
that existing pure mathematics has to offer and often 
some not-yet-existing mathematics as well. 

PRELIMINARIES 

Algorithms and complexity - It is assumed that the 
reader has an intuitive understanding of the notion of 
an algorithm as being a recipe that given one finite 
sequence of nonnegative integers, called the input 
data, produces another, called the output. Formally, an 
algorithm may be defined as a Turing machine, but for 
several of our results it is better to choose as our 
"machine model" an idealized computer that is more 
realistic with respect to its running time, which is 
another intuitively clear notion that we do not define. 
We refer to and the literature given there for a further 
discussion of these points. 
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The length of a finite sequence of nonnegative 

integers  is defined to be . It 
must informally be thought of as proportional to the 
number of bits needed to spell out the nt in binary. By 
analyzing the complexity of an algorithm we mean in 
this study finding a reasonably sharp upper bound for 
the running time of the algorithm expressed as a 
function of the length of the input data. This should, 
more precisely, be called time complexity, to 
distinguish it from space complexity. An algorithm is 
said to be polynomial-time or good if its running time 

is , where is the length of the input. 
Studying the complexity of a problem means finding an 
algorithm for that problem of the smallest possible 
complexity. In the present study we consider the 
complexity analysis complete when a good algorithm 
for a problem has been found, and we will not be 
interested in the value of the 0-constant. Informally, a 
problem has a good algorithm if an instance of the 
problem is almost as easily solved as it is formulated. 

Sometimes we will refer to a probabilistic algorithm, 
which is an algorithm that may use a random number 
generator for drawing random bits. One formalization 
of this is a nondeterministic Turing machine. Unless 
we use the word probabilistic, we do not allow the use 
of random number generators, and if we wish to 
emphasize this we talk of deterministic algorithms. In 
the case of a probabilistic algorithm, the running time 
and the output are not determined by the input alone, 
but both have, for each fixed value of the input data, a 
distribution. The expected running time of a 
probabilistic algorithm is the expectation of the running 
time for a given input. Studying the complexity of a 
probabilistic algorithm means finding an upper bound 
for the expected running time as a function of the 
length of the input. For a few convenient rules that can 
be used for this purpose we refer to. A probabilistic 
algorithm is called good if its expected running time 

is , where / is the length of the input. 

Parallel algorithms have not yet played any role in 
algorithmic number theory, and they will not be 
considered here. 

Many results in this study assert that "there exists" an 
algorithm with certain properties. In all cases, such an 
algorithm can actually be exhibited, at least in 
principle. 

All 0-constants are absolute and effectively 
computable unless indicated otherwise. 

Encoding data - As stated above, the input and the 
output of an algorithm consist of finite sequences of 
nonnegative integers. However, in the mathematical 
practice of thinking and writing about algorithms one 
prefers to work with mathematical concepts rather than 
with sequences of nonnegative integers that encode 

them in some manner. Thus, one likes to say that the 
input of an algorithm is given by an algebraic number 
field rather than by the sequence of coefficients of a 
polynomial that defines the field; and it is both shorter 
and clearer to say that one computes the kernel of a 
certain endomorphism of a vector space than that one 
determines a matrix of which the columns express a 
basis for that kernel in terms of a given basis of the 
vector space. To justify such a concise mode of 
expression we have to agree on a way of encoding 
entities such as number fields, vector spaces, and 
maps between them by means of finite sequences of 
nonnegative integers. That is one of the purposes of 
the remainder of this section. Sometimes there is one 
obvious way to do the encoding, but often there are 
several, in which case the question arises whether 
there is a good algorithm that passes from one 
encoding to another. When there is, we will usually not 
distinguish between the encodings, although for 
practical purposes they need not be equivalent. 

We shall see that the subject of encoding mathematical 
entities suggests several basic questions, but we will 
not pursue these systematically. We shall not do much 
more than what will be needed in later sections. 

Elementary arithmetic - By Z we denote the ring of 
integers. Adding a sign bit we can clearly use 
nonnegative integers to represent all integers. The 
traditional algorithms for addition and subtraction take 

time , where is the length of the input. The ordinary 
algorithms for multiplication and division with remainder, 
as well as the Euclidean algorithm for the computation 

of greatest common divisors, have running time . 
With the help of more sophisticated methods this can 

be improved to for . 

An operation that is not known to be doable by means 
of a good algorithm is decomposing a positive integer 
into prime numbers , but there is a good probabilistic 
algorithm for the related problem of deciding whether a 
given integer is prime. No good algorithms are known 
for the problem of recognizing square free numbers and 
the problem of finding the largest square dividing a 
given positive integer, even when the word "good" is 
given a less formal meaning. 

For some algorithms a prime number p is part of the 
input. In such a case, the prime is assumed to be 
encoded by it rather than that, for example, n stands for 
the nth prime. Since we know no good deterministic 
algorithm for recognizing primes, it is natural to ask 
what the algorithm does if p is not prime or at least not 
known to be prime. Some algorithms may discover that 
p is nonprime, either because a known property of 
primes is contradicted in the course of the 
computations, or because the algorithm spends more 
time than it should; such algorithms may be helpful as 
primarily tests. Other algorithms may even give a 
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nontrivial factor of p, which may make them applicable 
as integer factoring algorithms. For both types of 
algorithms, one can ask what can be deduced if the 
algorithm does appear to terminate successfully. Does 
this assist us in proving that p is prime? What do we 
know about the output when we do not assume that p 
is prime? An algorithm for which this question has not 
been answered satisfactorily is Schoofs algorithm for 
counting the number of points on an elliptic curve over 
a finite field. 

Linear algebra - Let F be a field, and suppose that 
one has agreed upon an encoding of its elements, as 
is the case when F is the field Q of rational numbers or 
the field Fp for some prime number p . Giving a finite-
dimensional vector space over F simply means giving 
a nonnegative integer n , which is the dimension of the 
vector space. This number n is to be given in unary, 
i.e., as a sequence 1, 1, ... , 1 of n ones, so that the 
length of the encoding is at least n. This is because 
almost any algorithm related to a vector space of 
dimension n takes time at least n. The elements of 
such a vector space are encoded as sequences of n 
elements of F. Homomor- phisms between vector 
spaces are encoded as matrices. A subspace of a 
vector space can be encoded as a sequence of 
elements that spans the subspace, or as a sequence 
of elements that forms a basis of the subspace, or as 
the kernel of a homomorphism from the vector space 
to another one. For all fields F that we shall consider 
the traditional algorithms from linear algebra, which 
are based on Gaussian elimination, are polynomial-
time: algorithms that pass back and forth between 
different representations of subspaces, algorithms that 
decide inclusion and equality of subspaces, that form 
sums and intersections of sub- spaces, algorithms that 
construct quotient spaces, direct sums, and tensor 
products, algorithms for computing determinants and 
characteristic polynomials of endomorphisms, and 
algorithms that decide whether a given homomorphism 
is invertible and if so construct its inverse. The proofs 
are straightforward, the main problem being to find 
upper bounds for the sizes of the numbers that occur 
in the computations, for example when F = Q. 

If one applies any of these algorithms to F = Z//pZ 
without knowing that p is prime, then one either finds a 
nontrivial divisor of p because some division by a 
nonzero element fails, or the algorithm performs 
successfully as if F were a field. In the latter case it is 
usually easy to interpret the output of the algorithm in 
terms of free Z/pZ-modules, thus avoiding the 
assumption that p be prime. 

Rings - We use the convention that rings have unit 
elements, that a subring has the same unit element, 
and that ring homomorphisms preserve the unit 
element. The characteristic char of a ring A is the 
nonnegative integer that generates the kernel of the 

unique ring homomorphism . The group of units 

of a ring A is denoted by . All rings in this study are 
supposed to be commutative. 

Almost any ring that we need to encode in this study 
has an additive group that is either finitely generated 
or a finite-dimensional vector space over Q; for 
exceptions. Such a ring A is encoded by giving its 
underlying abelian group together with the 
multiplication map . It is straightforward to 
decide in polynomial time whether the multiplication 
map satisfies the ring axioms. 

Ideals are encoded as subgroups or, equivalently, as 
kernels of ring homomorphisms. There are good 
algorithms for computing the sum, product, and 
intersection of ideals, as well as the 

ideal for given I and J, and the 
quotient ring of A modulo a given ideal. 

A polynomial over a ring is always supposed to be 
given by means of a complete list of its coefficients, 
including the zero coefficients; thus we do not work with 
sparse polynomials of a very high degree. 

Most finite rings that have been encountered in 
algorithmic number theory "try to be fields" in the sense 
that one is actually happy to find a zero-divisor in the 
ring. This applies to the way they occur in §4 and also 
to the application of finite rings in primality testing. 
Nevertheless, it seems of interest to study finite rings 
from an algorithmic point of view for their own sake. 
Testing whether a given finite ring is local can be done 
by a good probabilistic algorithm, but finding the 
localizations looks very difficult. Testing whether it is 
reduced or a principal ideal ring also looks very difficult, 
but there may be a good algorithm for deciding whether 
it is quasi-Frobenius. I do not know whether 
isomorphism can be tested in polynomial time. Many 
difficulties are already encountered for finite rings that 
are F^-algebras for some prime number p. Two finite 
etale Fp-algebras can be tested for isomorphism in 
polynomial time, but there is no known good 
deterministic algorithm for finding the isomorphism if it 
exists; if they are fields, there is, but the proof depends 
on ring theory. 

Local fields - A local field is a locally compact, 
nondiscrete topological field. Such a field is 
topologically isomorphic to the field R of real numbers, 
or to the field C of complex numbers, or, for some 
prime number p, to a finite extension of the field Qp of 
p-adic numbers, or, for some finite field E, to the field 
E((t)) of formal Laurent series over E. A local field is 
uncountable, which implies that we have to be satisfied 
with specifying its elements only to a certain precision. 
The discussion below is limited to the case that the field 
is non-archimedean, i.e., not isomorphic to R or C. 

The complexity theory of local fields has not been 
developed as systematically as one might expect on 
the basis of their importance in number theory. The first 
thing to do is to develop algorithms for factoring 
polynomials in one variable to a given precision; and §4 
below. Here the incomplete solution of the 
corresponding problem over finite fields causes a 
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difficulty; we are forced to admit probabilistic 

algorithms, or to allow the running time to be times 
polynomial time, where p denotes the characteristic 

RINGS OF INTEGERS 

In this section we consider the following problem and 
its complexity. 

Problem-1 : Given an algebraic number field K, 
determine its ring of integers  

Constructing an order in K, we see that this problem is 
equivalent to the following one. 

Problem-2. Given an order A in a number field K, 
determine the ring of integers of K. 

Much of the literature on this problem assumes that 

the given order is an equation order , and it is true 
that equation orders offer a few advantages in the 
initial stages of several algorithms. It may be that in 
many practical circumstances one never gets beyond 
these initial stages , but in the worst case—which is 
what we are concerned with when we estimate the 
complexity of a problem—these advantages quickly 
disappear as the algorithm proceeds. For this reason 
we make no special assumptions about A except that 
it is an order. 

Most of what we have to say about Problem 2 also 
applies to the following more general problem. 

Problem-3. Given a commutative ring A of which the 

additive group is isomorphic to for some n , and that 
has a no vanishing discriminant over Z, determine the 

maximal order in  The main result on Problem 
1, which is due to Chistov, is a negative one. 

Theorem-1. Under deterministic polynomial time 
reductions, Problem 1 is equivalent to the problem of 
finding the largest square factor of a given positive 
integer. 

The problem of finding the largest square factor of a 
given positive integer m is easily reduced to Problem 1 
by considering the number field  For the 
opposite reduction, which in computer science 
language is a "Turing" reduction, we refer to the 
discussion following Theorem 2 below. 

Since there is no known algorithm for finding the 
largest square factor of a given integer m that is 
significantly faster than factoring m, Theorem 1 shows 
that Problem 1 is currently intractable. More seriously, 
even if someone gives us , we are not able to 
recognize it in polynomial time, even if probabilistic 
algorithms are allowed. Deciding whether the given 

order A in Problem 2 equals is currently an 

infeasible problem, just as deciding whether a given 
positive integer is squarefree is infeasible. This is not 
just true in theory, it is also true in practice. 

One possible conclusion is that is not an object that 
one should want to work with in algorithms. It may very 

well be that whenever is needed one can just as well 
work with an order A in K, and assume that A 

equals until evidence to the contrary is obtained. 
This may happen, for example, when a certain 
nonzero ideal of A is found not to be invertible; in that 
case one can, in polynomial time, construct an order A' 

in K that strictly contains A and proceed with instead 
of A . 

If it indeed turns out to be wise to avoid working 

with , then it is desirable that more attention be given 
to general orders, both algorithmically and theoretically. 
This is precisely what has happened in the case of 
quadratic fields. 

The order A equals if and only if all of its nonzero 
prime ideals p are nonsingular; here we call p 

nonsingular if the local ring is a discrete valuation 

ring, which is equivalent to . One may 

wonder, if it is intractable to find , can one at least find 
an order in K containing A of which the singularities are 
bounded in some manner? One result of this sort is 
given below in Theorem 3; it implies that given A , one 
can find an order B in K containing Asuch that all 

singularities of B are plane singularities, i.e., 

satisfy  

The geometric terminology just used should remind us 
of a situation in which there does exist a good method 
for finding the largest square factor, namely, if we are 
dealing with polynomials in one variable over a field. 
Thus, Theorem 1 suggests that, for a finite field E, 
finding the integral closure of the polynomial ring E[t] in 
a given finite extension of E(t) is a tractable problem, 
and results of this nature have indeed been obtained. In 
geometric language, this means that it is feasible to 
resolve the singularities of a given irreducible algebraic 
curve over a given finite field. The corresponding 
problem over fields of characteristic zero has been 
considered as well , and one may wonder whether the 
geometric techniques that have been proposed can 
also be used in the context of Problem 2. In any case, 
we can formulate Problem 2 geometrically by asking for 
the resolution of the singularities of a given irreducible 
arithmetic curve. 

Theorem 2. There is a good algorithm that given K and 

A as above, as well as an integer , determines an 

order B in K that contains for each prime number p 
that divides q exactly once. 
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To prove this, one first observes that it suffices to 
exhibit a good algorithm that given K, A and q either 
finds B as in the statement of the theorem, or finds a 

nontrivial factorization . Namely, in the latter 
case one can precede recursively with q\ and q2 to find 
orders B1, B2, and one lets B be the ring generated by 
Bx and B2. 

To find B or qx, q2, one applies the algorithm outlined 
above, with a few changes. The first change is that 
one starts by checking that q is not divisible by any 

prime number ; if it is, then either one finds a 
nontrivial splitting of q, or q is a small prime number 
and one can apply the earlier algorithm. So let it now 

be assumed that q has no prime factors , and 

that  The second change is that one replaces, in 

the above algorithm, p and everywhere by q and . 
This affects the linear algebra routines, which are only 
designed to work for vector spaces over fields. 
However, they work just as well for modules over a 

ring , until some division in fails, in which case 
one obtains a nontrivial factor qx of q. The third change 

is that should now be calculated as the "radical of 
the trace form," i.e., as the kernel of the Z/qZ-linear 
map  that sends x to the map 
sending y to Tr(jcy), where is the trace 
map. If q is a prime number exceeding n then this is 
the same r as above. 

One can show that the modified algorithm has the 
desired properties. This concludes our sketch of the 
proof of Theorem 2. 

Using Theorem 2 we can complete the proof of 
Theorem 1. Namely, suppose that one has an 
algorithm that determines the largest square divisor of 
any given positive integer. Calling this algorithm a few 
times, one can determine the largest square free 
number q for which q

2
 divides the discriminant of A . 

Applying the algorithm of Theorem 2 to q one obtains 

an order B that contains for each prime p for which 

p
2
 divides the discriminant of A , so that  

We now formulate a result that also gives information 
about the local structure of B at primes p for which p

2
 

divides q . Let A be an order in a number field K, and 
let q be a positive integer. We call A nonsingular at q if 
each prime ideal of A containing q is nonsingular. We 

call A tame at q if for each prime ideal of A containing 
q there exist an unramified extension R of the ring Zp 

of p-adic integers, where , a positive 

integer e that is not divisible by p , and a unit , 
such that there is an isomorphism 

 of Zp-algebras. As a partial 
justification of the terminology, we remark that for 
prime q the order A is tame at q if and only if each 
prime ideal of A containing q is nonsingular and 
tamely ramified over q ; this follows from a well-known 
structure theorem for tamely ramified extensions of Zq. 
If A is tame at q and p is a prime ideal of A containing 

q, then  is nonsingular if and only if 

either divides q exactly once or the 

number e above equals 1, and otherwise is a plane 
singularity. 

Theorem 3. There is a good algorithm that, given an 
order A in a number field K of degree n, finds an order 
B in K containing A and a sequence of pairwise 

coprime divisors qi, , of the discriminant of B, 
such that 

1. B is tame at ; 

2. All prime numbers dividing q exceed n; 

3. B is nonsingular at all prime numbers p that 
does not divide q. 

This follows from a closer analysis of the algorithm of 
Theorem 2. Using this theorem and the properties of 
tameness, one can deduce the following result, which 

expresses that one can approximate as closely as 
can be expected on the basis of Theorem 1. 

CONCLUSION 

In summary, using the tools gained via abstract 
algebra, we are able to take on a different field of 
mathematics, extending what the reader might already 
be familiar with known as elementary number theory. 
We created an abstract algebra analogue to a familiar 
theorem, and shed more light on its properties. 
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