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Abstract – This paper contributes to the theoretical analysis of linear Differential Algebraic Equations of 
higher order as well as of the regularity and singularity of matrix polynomials. Some invariants and 
condensed forms under appropriate equivalent transformations are given for systems of linear higher-
order Differential-Algebraic Equations’ with constant and variable coefficients. Inductively, based on 
condensed forms the original Differential-Algebraic Equations system can be transformed by 
differentiation-and-elimination steps into an equivalent strangeness-free system, from which the solution 
behaviour (including consistency of initial conditions and unique solvability) of the original Differential-
Algebraic Equations system and related initial value problem can be directly read off. It is shown that the 
following equivalence holds for a Differential-Algebraic Equations system with strangeness-index ^ and 
square and constant coefficients. For any consistent initial condition and any right-hand side

the associated initial value problem has a unique solution if and only if the matrix 
polynomial associated with the system is regular. 

Some necessary and sufficient conditions for column- and row- regularity and singularity of rectangular 
matrix polynomials are derived. A geometrical characterization of singular matrix pencils is also given. 
Furthermore, an algorithm is presented which - using rank information about the coefficients matrices 
and via computing determinants - decides whether a given matrix polynomial is regular.  

Keywords: Constant, Coefficients, Linear, Higher-Order, Differential-Algebraic, Equations, matrix, 
polynomial, etc. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

In this chapter, we consider systems of linear /th-order

differential-algebraic equations with constant 
coefficients of the form 

  (1) 

where 

 
possibly together with initial conditions 

    (2) 

Here, the nonnegative integer is the strangeness-
index of the system (1), i.e., to get continuous 

solutions of the (1), the right-hand side has to be

continuously differentiable (later, in Section 2 

we shall give an explicit definition of the strangeness- 
index). 

First, let us clarify the concepts of solution of the 
system (1), solution of the initial value problem (1)-
(2), and consistency of the initial conditions (2). 

Definition 1: A vector-valued function 

 is 

called solution of (1) if

 exist and for j = 1,..., m the following equations are 
satisfied:  

 

where Aj (j, k) denotes the element of the matrix Aj 
lying on the jth row and the kth column of Aj and f (t) 
:= [fi (t),..., fm(t)]

T
. 
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A vector-valued function is 
called solution of the initial value problem (1)-( 2) if it is 
a solution of (1) and, furthermore, satisfies (2). Initial 
conditions (2.2) are called consistent with the system 
(1) if the associated initial value problem (1)-( 2) has at 
least one solution. 

In the last section we saw that DAEs differ in many 
ways from ordinary differential equations. For instance 
the circuit lead to a DAE where a differentiation 
process is involved when solving the equations. This 
differentiation needs to be carried out numerically, 
which is an unstable operation. Thus there are some 
problems to be expected when solving these systems. 
In this section we try to measure the difficulties arising 
in the theoretical and numerical treatment of a given 
DAE. 

Modelling with differential-algebraic equations plays a 
vital role, among others, for constrained mechanical 
systems, electrical circuits and chemical reaction 
kinetics. 

In this paper we will give examples of how DAEs are 
obtained in these fields. We will point out important 
characteristics of differential-algebraic equations that 
distinguish them from ordinary differential equations. 

Consider the (linear implicit) DAE system: 

Ey' = A y + g(t) with consistent initial conditions and 
apply implicit Euler: 

E(yn+1 - yn)/h = A yn+1 + g(tn+1) 

and rearrangement gives: 

yn+1 = (E - A h)
-1

 [E yn + h g(tn+1)] 

Now the true solution, y(tn), satisfies: 

E[(y(tn+1) - y(tn))/h + h y''(x)/2] = A y(tn+1) + g(tn+1) 

and defining en = y(tn) - yn, we have: 

en+1 = (E - A h)
-1

 [E en - h2 y''(x)/2] 

e0 = 0, known initial conditions where the columns of 
Aa correspond to the voltage, resistive and capacitive 
branches respectively. The rows represent the 
network’s nodes, so that ¡1 and 1 indicate the nodes 
that are connected by each branch under 
consideration. Thus AA assigns a polarity to each 
branch.  

Example 1 We investigate the initial value problem for 
the linear second-order constant coefficient 
Differential-Algebraic Equations’ 

 (3) 

Where 

 
is suciently smooth, together with the initial conditions? 

 (4) 

where 

 A 
short computation shows that system (2.3) has the 
unique solution 

 (5) 

Moreover, (5) is the unique solution of the initial value 
problem (3)-(4) if the initial conditions (4) are 
consistent, namely, 

 (6) 

If we let 

 

then we have the following initial-value problem for 
the linear first-order Differential-Algebraic Equations’ 

 (7) 

together with the initial condition 

 (8) 

It is immediate that the system (7) of first-order 
Differential-Algebraic Equations has the unique 
solution 

 (9) 

In this form, (9) is the unique solution of the initial 
value problem (7)-(8) if the initial condition (8) is 
consistent, i.e., 
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  (10) 

Remark 4 Example 3 shows that the second-order 
system (3) has a unique continuous solution (5) if and 
only if the right-hand side satisfies 

 

whereas the converted first-order system (7) has a 
unique continuous solution if and only if

or in other words, the 
strangeness-index of the converted first-order system 
(7) is larger by one than that of the original second-
order system (3). For a general system of /-th-order 
Differential-Algebraic Equations’, it is not difficult to 
find similar examples. 

Differential-Algebraic Equations’ into an associated 
system of first-order Differential-Algebraic Equations’ is 
not always equivalent in the sense that higher degree 
of the smoothness of the right-hand side f (t) may be 
involved in the solutions of the latter.  

It should be noted that Example 3 also shows that, to 
obtain continuous solutions of a system of Differential-
Algebraic Equations’, some parts of the right-hand side 
f (t) may be required to be more differentiable than 
other parts which may be only required to be 
continuous; for a detailed investigation, we refer to, for 
example. Nonetheless, in order to simplify algebraic 
forms of a system of Differential-Algebraic Equations’, 
we usually apply algebraic equivalence transformation 
to its matrix coefficients. For this reason and to avoid 
becoming too technical, we always consider the 
differentiability of the right-hand side vector-valued 
function f (t) as a whole, and do not distinguish the 
degrees of smoothness required of its components 
from each other. 

MATRIX CONDENSED FORM:  

As we have mentioned for convenience of notation 
and expression, in this section we shall work mainly 
with systems of linear second-order Differential-
Algebraic Equations’ with constant coefficients 

 (11) 

with
possibly together with initial conditions 

     (12) 

It is well-known that the nature of the solutions of the 
system of linear first-order constant coefficient 
Differential-Algebraic Equations’ 

 

with and can 
be determined by the properties of the corresponding 

matrix pencil Furthermore, the algebraic 

properties of the matrix pencil can be well 
understood through studying the canonical forms for 
the set of matrix pencils 

  (13) 

where are any nonsingular 
matrices. In particular, among those canonical forms 
for (13) are the well-known Weierstrass canonical 
form for regular matrix pencils and the Kronecker 
canonical form for general singular matrix pencils 
from which one can directly read off the solution 
properties of the corresponding Differential-Algebraic 
Equations’. 

Similarly, as we will see later in this chapter, the 
behaviour of solutions of the system (11), as well as 
the initial value problem (11)-(12), depends on the 
properties of the quadratic matrix polynomial 

  (14) 

If we let and premultiply (11) by P, 

where are 

nonsingular matrices, we obtain an equivalent system 
of Differential-Algebraic Equations’ 

 (15) 

and a new corresponding quadratic matrix polynomial 

 
(16) 
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Here, by equivalence we mean not only that the 

relation 

 

However, it is also well-known that it is an open 
problem to find a canonical form for quadratic matrix 
polynomials (16), let alone higher-degree matrix 
polynomials, from which we can directly read off the 
solution properties of the corresponding system of 
Differential-Algebraic Equations’. Nonetheless, 
inspired by the work of (though the papers mainly deal 
with linear first-order Differential-Algebraic Equations 
with variable coefficients), we shall in this section give 
an equivalent condensed form for quadratic matrix 
polynomials (14) through purely algebraic 
manipulations and coordinate changes. Based on the 
condensed form we can partially decouple the system 
into three parts, namely, an ordinary-differential-
equation part, an algebraic part and a coupling part, 
and therefore pave the way for the further treatment of 
the system in the following section. Sometimes, we will 

use the notation of a matrix (/ + 1)-
tuple instead of the matrix polynomial

degree which is 
associated with the general /th-order system (1) of 
Differential-Algebraic Equations’. By the following 
definition, we make the concept of equivalence 
between two general matrix (/ + 1)-tuples clear. 

Definition Two and

 

of matrices are called 
(strongly) equivalent if there are non- singular matrices

such that 

   (17) 

If this is the case, we write

 

The result on the canonical form for a single matrix 
under equivalence relation (17) is well-known: 

Lemma: let then there are nonsingular 
matrices 

 

Such that 

 (18) 

Where moreover, we have 

 (19) 

Where N(■) denotes the null space of a matrix, and R(-
) the column space of a matrix. 

The condensed form for a matrix pair (E,A) under 
equivalence relation (17) has been implicitly. 

 

 (20) 

Then, the matrix pair (E, A) is equivalent to a matrix 
pair of the form 

 (21) 

 

 (22) 

are invariant under equivalence relation (17).  

For completeness, we give a proof of this lemma. 

Proof of Lemma. In the following, the word "new" on 
top of the equivalence operator denotes that the 
subscripts of the entries are adapted to the new block 
structure of the matrices. Using Lemma, we obtain 
the following sequence of equivalent matrix pairs. 
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It remains to show that such quantities r, s, d, a, v, u 
are well-defined by (22) and invariant under the 
equivalence relation (17). In the case of r = rank (E), 
this is clear. For the other quantities, indeed, we only 
need to show two quantities a and s are well-defined 
and invariant under equivalence relation (17). Since 
we have proved  

 (23) 

By Lemma, we have 

  (24) 

namely, the columns of span , and the 

columns of span . From (23) it immediately 
follows that 

 (25) 

Hence, by (25), we have 

 (26) 

From (20) and (24) it follows that there exist 

nonsingular matrices  and

such that 

   
    (27) 

Then, from (2.26) and (2.27) it follows that 

 

Thus, a and s are indeed well-defined by (22) and 
therefore so are the quantities d, v and u. 

 Thus, we have prepared the way for further analyzing 
the systems (11) and (1) of Differential-Algebraic 

Equations’, which will be presented in the next two 
sections.  

LINEAR 1ST AND 2ND ORDER DIFFERENTIAL-
ALGEBRAIC EQUATIONS WITH CONSTANT 
COEFFICIENTS: 

In this section, we discuss the system (11) of 
Differential-Algebraic Equations’, and answer those 
questions raised at the beginning of this chapter. Let 
us start by writing down the system of differential-
algebraic equations in the last section we saw that 
DAEs differ in many ways from ordinary differential 
equations. For instance the circuit lead to a DAE 
where a differentiation process is involved when 
solving the equations. This differentiation needs to be 
carried out numerically, which is an unstable 
operation. Thus there are some problems to be 
expected when solving these systems. In this section 
we try to measure the difficulties arising in the 
theoretical and numerical treatment of a given DAE. 

Modelling with differential-algebraic equations plays a 
vital role, among others, for constrained mechanical 
systems, electrical circuits and chemical reaction 
kinetics. In this section we will give examples of how 
DAEs are obtained in these fields. 

We will point out important characteristics of 
differential-algebraic equations that distinguish them 
from ordinary differential equations. More information 
about differential-algebraic equations can be found 
but also in Consider the mathematical pendulum. By 
construction the rows of AA are linearly dependent. 
However, after deleting one row the remaining rows 
describe a set of linearly independent equations; the 
node corresponding to the deleted row will be 
denoted as the ground node. 

As seen in the previous sections a DAE can be 
assigned an index in several ways. In the case of 
linear equations with constant coefficients all index 
notions coincide with the Kronecker index. Apart from 
that, each index definition stresses different aspects 
of the DAE under consideration. While the 
differentiation index aims at finding possible 
reformulations in terms of ordinary differential 
equations, the tractability index is used to study DAEs 
without the use of derivative arrays. In this section we 
made use of the sequence (2) established in the 
context of the tractability index in order to perform a 
refined analysis of linear DAEs with properly stated 
leading terms. We were able to find explicit 
expressions of (12) for these equations with index 1 
and 2. Let me be the pendulum’s mass which is 
attached to a rod of length l. In order to describe the 
pendulum in Cartesian coordinates we write down the 
potential energy U(x; y) = mgh = mgl ¡ mgy where ¡ 
x(t); y(t) ¢ is the position of the moving mass at time t. 
The earth’s acceleration of gravity is given by g, the 
pendulum’s height is h. If we denote derivatives of x 
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and y by x˙ and y˙ respectively, the kinetic energy 
some additional simple examples: 

Consider the (linear implicit) DAE system: 

Ey' = A y + g(t) with consistent initial conditions and 
apply implicit Euler: 

E(yn+1 - yn)/h = A yn+1 + g(tn+1) 

and rearrangement gives: 

yn+1 = (E - A h)
-1

 [E yn + h g(tn+1)] 

Now the true solution, y(tn), satisfies: 

E[(y(tn+1) - y(tn))/h + h y''(x)/2] = A y(tn+1) + g(tn+1) 

and defining en = y(tn) - yn, we have: 

en+1 = (E - A h)
-1

 [E en - h2 y''(x)/2] 

e0 = 0, known initial conditions where the columns of 
AA correspond to the voltage, resistive and capacitive 
branches respectively. The rows represent the 
network’s nodes, so that ¡1 and 1 indicate the nodes 
that are connected by each branch under 
consideration. Thus AA assigns a polarity to each 
branch. 

This detailed analysis leads us to results about 
existence and uniqueness of solutions for DAEs with 
low index. We were able to figure out precisely what 
initial conditions are to be posed, namely D(t0)x(t0) = 
D(t0)x0 and D(t0)P1(t0)x(t0) = D(t0)P1(t0)x0 in the index 1 
and index 2 case respectively.  

CONCLUSION: 

In this paper we have presented the theoretical 
analysis of two interrelated topics: linear differential-
algebraic equations of higher-order and the regularity 
and singularity of matrix polynomials. 

In the first part of this paper, we have directly 
investigated the mathematical structures of general 
(including over- and underdetermined) linear higher-
order systems of Differential-Algebraic Equations’ with 
constant and variable coefficients. Making use of the 
algebraic techniques devised and taking linear 
second-order systems of Differential-Algebraic 
Equations’ as examples, we have given condensed 
forms, under strong equivalence transformations, for 
triples of matrices and triples of matrix-valued 
functions which are associated with the systems of 
constant and variable coefficients respectively. It 
should be noted that in the case of variable 
coefficients, we have developed a system of invariant 
quantities and a set of regularity conditions to ensure 
that the condensed form can be obtained. Based on 
the condensed forms, we have converted the systems 
into ordinary-differential-equation part, 'strange' 

coupled differential-algebraic-equation part, and 
algebraic-equation part, and designed the 
differentiation-and-elimination steps to partially 
decouple the strange part. Inductively conducting such 
process of transformation and decoupling, we have, 
finally, converted the original systems into equivalent 
strangeness-free systems, from which the solution 
behaviour with respect to solvability, uniqueness of 
solutions and consistency of initial conditions can be 
directly read off. In the future we expect that detecting 
the regularity and singularity and providing information 
on the nearness to singularity will be realized in those 
software packages which deal with systems of linear 
differential-algebraic equations with constant 
coefficients and polynomial eigenvalue problems. 
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