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Abstract – This paper explores graph theory, their associated matrix representations, and the matrix 
properties found in Modern algebra. Not only the adjacent graph matrices but also the most interesting 
examples found in incidence matrices, trajectory matrices, the distance matrices and the Laplacian 
matrices are discussed. Work includes the use of matrix representations for various graph groups, 
including decoupled graphs, complete graphs and trees. This paper discusses some of the most 
important theorems in matrix representations of graphs to accomplish this objective. The graphs are an 
incredibly flexible device, since they can all models from modern informatics and geographical 
complexity to the complexities of language relations and the universality of modern algebraic structures. 
The representation of these graphs as matrices enhances the machine aspects of this modeling only. In 
the end, modern algebra is needed.  
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INTRODUCTION 

The theory of graphs looks at the graph-related 
structure, properties and algorithms. Graphs 
represent several equivalents; the principal concept, 
a norm that is adopted also in this paper, is one 
representation in particular. 

A graph, denoted G, is defined as an ordered pair 
composed of two distinct sets: 

1. A set of vertices, denoted V (G) 

2. A set of edges, denoted E(G) 

The order of a graph G refers to |V (G)| and the size 
of a graph G refers to |E(G)|. This is to say, the 
number of vertices is indicated in order, and the sum 
of borders is indicated. We use matrices as an 
extremely useful alternative representation to 
perform calculations with these graphs. The event, 
adjacence, size, and Laplacian matrices contain 
these representations. 

In one restricted but very common sense of the term, 
a graph is an ordered pair G=(V,E)}G=(V,E) 
comprising: 

V, a set of vertices (also called nodes or points); 

 a set of edges (also 
called links or lines), which are unordered vertical 
pairs (that is, two distinct vertices are connected with 
the edge). 

This type of object can be called an undirected 
simple graph precisely to avoid confusion. 

In the edge  the vertices  and  are called 
the endpoints of the edge. The edge is said to join 

 and to be incident on . Within a graph 
there can be a edge and not a surface. The two or 
more edges that connect the same two vertices are 
multiple edges that are not permitted by the 
definition above. 

In one more general sense of the term allowing 
multiple edges, [3][4] a graph is an ordered triple 

 comprising: 

V, a set of vertices (also called nodes or points); 

E, a set of edges (also called links or lines); 

 An Incidence 
function that maps each edge into an unordered 
vertical pair (i.e. a two-edge edge). This sort of 
object should specifically be called an undirected 
multigraph in order to prevent confusion. 
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A graph with three vertices and three edges 

A loop is a rim that connects to itself a hinge. Graphs 
as specified in the two definitions above cannot have 
loops since the loop that attaches a vertex x to itself 
is either the edge (in case of a simple undirected 
graph) or on (in the case of an undirected 

multigraph). . 
So to allow loops the definitions must be expanded. 
For undirected simple graphs, the definition of  

should be modified to . For 

undirected multigraph, the definition of  should be 

modified to . To prevent 
confusion, undirected simple graphs allowing loops 
and undirected multigraph allowing loops can be 
called these kinds of artifacts, respectively. 

 Generally, they are taken as finite and many 
of the most common results for infinite graphs are not 
valid (or different), since in the infinite case, many 
arguments fail. In addition, V is often believed not to 
be vacant but E may be vacant. The graph 
|V| sequence is its vertical number. The graph’s |E| 
size is and its edge number. The degree or valence 
of the vertex is the number of edges, where a loop is 
double counted. 

Directed graph 

A directed graph or digraph is a graph in which 
edges have orientations. 

In one restricted but very common sense of the 
term,[5] a directed graph is an ordered pair G=(V,E) 
comprising: 

V, a set of vertices (also called nodes or points); 

 A set of edges, or pairs 
of vertices, which are ordered (i.e., an edge is 
connected to two distinctive vertices), (which also 
means guiding boundaries, directed lines, arrows, or 
arcs). 

To avoid ambiguity, this type of object may be called 
precisely a directed simple graph. 

The endpoints x and y of the surface of the surface, x 
the tail of the bottom, and y the head of the rim are 

referred to as the rim (x, y) directed from x to y. The 
edge should be x and y together, so it should appear 
on x or y. Within a graph there can be an edge and 
not a surface. The surface (y, x) is known as the 
inverted surface (x, y). Multiple edges are two or 
more edges with the same tail and one ear, not 
permitted by the above definition. 

 

A directed graph with three vertices and four 
directed edges (the double arrow represents an 
edge in each direction).  

In one more general sense of the term allowing 
multiple edges,[5] a directed graph is an ordered 
triple  comprising:  

V, a set of vertices (also called nodes or points); 

E, a set of edges (also called directed edges, 
directed links, directed lines, arrows or arcs); 

 An incidence function 
that maps each edge to a sequenced pair of vertices 
(the edge with two different vertices is associated). 
A guided multigraph can be specifically named this 
type of object to avoid ambiguity.   

A loop is an edge that connects to itself a hinge. 
Directed graphs as described in the above two 
definitions cannot have loops, as a loop that joins an 
umbrella x is either the edge (for the simple diagram 
directed) or an incident (for the directed multi graph) 

 which is not in . So to 
allow loops the definitions must be expanded. For 
directed simple graphs, the definition of E should be 

modified to . For directed 

multigraph, the definition of   should be modified to 

 Precisely a clear simple graph 
requiring loops and a multigram requiring loops (or 
quavers) can be related to these types of objects to 
prevent confusion. 

The edges of a directed simple graph permitting 
loops G is a homogeneous relation ~ on the vertices 
of G that is called the adjacency relation of G. 
Specifically, for each edge (x, y), its endpoints x and 
y are said to be adjacent to one another, which is 

denoted  
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ADJACENCY MATRICES 

For a graph G of order n, the adjacency matrix, 
denoted A(G), of graph G is an n by n matrix whose 
(i,j)-th entry is determined as follows: 

 

In addition to the graph structure and relationships, 
adjacent matrices provide an efficient storage and 
access method in a computer. Therefore, adjacent 
matrices are one of the most prevalent types of 
graph representation. 

Distance and Powers of A  

The distance between vertices vi and vj (d(i, j) of a G 
graph is defined by the path between the two 
vertices which is the minimum length. Take the graph 
in Figure 1 for example. Between vertices v6 and v8, 
there are two paths of length 4 as shown in Figure 2. 
The graph's corresponding matrix provides a way of 
estimating the strength of these directions.  

 

Figure 1: Graph of Order 8 

 

Figure 2: Depiction of 2 Paths between Vertices 6 
and 8 

Theorem 1. Let G be a graph with adjacency matrix 
A and k be a positive integer. Then the matrix power 
A

k
 gives the matrix where Aij counts the the number 

of paths of length k between vertices vi and vj. 

For example, return to the graph shown in Figure 2. 
Equation 2 depicts the adjacency matrix of this 
graph, A(G), and its fourth power. 

 

The (6,8)-entry of A4 (G) is required to count all 
paths between vertices v6 and v8, and the (7,6)-entry 
is symmetrical. While these results are a useful way 
to count the number of paths between vertices in a 
graph it can be expanded to a corollary that is 
equally interesting and logical. 

Corollary 1. Let G be a graph with adjacency matrix 
A and k be a positive integer. Then the sum Sn 
defined by 

 

is the n x n matrix whose (i,j)-entry counts the 
number of paths of length k or less between vertices 
vi and vj . 

Matrices are a useful computer tool to identify and 
organize the properties of a graph in this sense. 

Eigenvalues and Complete Graphs  

A complete graph G of orders n, denoted Kn, 
includes an edge between every pair of vertices. K5 

is shown in Figure 3, for example. Two sets, U, V ⊂ 
E(G)for which each vertex of U lies adjacent with 
each V vertex, and no two vertices within one and 
the same set. In this case, there is the complete 
bipartite G in order n = p+q, indicated Kp / q. K2,3 is 
shown in Figure 4. 

 

Figure 3: Complete Graph K5 
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Figure 4: Complete Bipartite Graph K3,4 

The value of a graph G is the value of a matrix 
corresponding to it. Some fascinating trends for 
complete graphs – both intermediate and 
intermediate.  

Theorem 2. For any positive integer n, the 
eigenvalues of Kn are n − 1 with multiplicity 1, and −1 
with multiplicity n - 1. For any positive integer p, q, 
the eigenvalues of Kp,q are √pq, − √pq, and 0 with 
multiplicity p + q − 2. 

Although this result is self-interesting, this theorem 
may be used to interweave a simple result in Modern 
algebra from the graph theory. 

A graph theory of order n−1 results in the elimination 
of all vertexes from a complete graph of order n in 
graph theory. Combining this fact with the above 
result, this means that every n − k + 1 square 
submatrix, 1 ≤ k ≤ n, of A(Kn) possesses the 
eigenvalue −1 with multiplicity k and the eigenvalue 
n−k+1 with multiplicity 1. Notably, this produces a 
natural bound on the eigenvalues of the sub matrices 
of A(Kn): 

 

INCIDENCE MATRICES 

The incidence matrix, referred to in Q(G), is the n by 
m matrix with I j)-th input for a G graph of order n and 
size m is determined as follows: 

 

While incidence matrices are not as computer-
friendly as adjacent matrices, the Modern algebra 
retains some interesting characteristics. 

Incidence and Rank  

First, a note: Q(G) column sums are all zero, so the 
Q(G) rows are modern since the vector of all 1 
occupies the null space of Q. The incidence matrix Q 
rank for any graph therefore needs to be lower than 
n. However, only one column is a modern 
combination for each graph G. of the others: 

Lemma 1. If G is a connected graph on n vertices, 
then rank Q(G) = n − 1. 

Nevertheless, this lemma only applies to linked 
graphs that have a path between certain vertices. A 
graph disconnected is a graph that has no path 
between at least one pair of vertices. The intuitive 
notion of not all vertices being on the same section of 
the graph is provided, as demonstrated by the 
example in Figure 5. 

 

Figure 5: A disconnected graph of order 9 

A part G is called any connected subparagraph of a 
graph G. There is only one part for linked graphs. 
We can generate a more general result for any 
graph using the previous lemma. 

Theorem 1. If G is a graph on n vertices and has k 
connected components then rank Q(G) = n − k. 

Incidence matrices thus capture another dimension 
of the diagrams. Thus adjacent matrices capture 
graph density and quantify relationships between 
vertices, these are related to properties such as 
node, and thus the incidence matrices are based on 
the relationships between the edges and vertices. 

PATH MATRICES AND INCIDENCE 
MATRICES 

Let G be a graph with size m and u, v ∈ V (G) (that 
is, any two vertices u and v of G). The path matrix 
for vertices u and v – denoted P(u, v) – is the q by m 
matrix, where q is the number of different paths 
between u and v, defined as follows: 

 

In other words, a path matrix is defined for a certain 
pair of vertices in a graph G in which  

• The rows of P(u, v) correspond to the 
different paths from vertex u to vertex v 
(which, for example, could be counted using 
the m-th power of the adjacency matrix 
Am(G), 

• The columns of P(u, v) correspond each to 
an edge in graph G 
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Incredibly, there exists a connection between the 
incidence matrix of a graph and its path matrix. 

Theorem 2. Let G be a graph of order n, and at least 

two vertices u, v ∈ V (G). Arrange the columns of its 
incidence matrix Q(G) such that they align with the 
columns of the path matrix P(u,v). Then, 

 

where M is the matrix having all ones in two rows u 
and v, and zeros in the remaining n - 2 rows. 

LAPLACIAN MATRICES 

The gradation of a vertex vi, as indicated, is that of 
the total number of vertices, adjacent to vertex i. This 
is how many edges from this vertex exist, is the 
degree of each vertex. This gives us an explanation 
for the concept of Laplacian matrix, which seems 
totally random at first glance but has a variety of 
unimaginable properties. The Laplacian Matrix of a 
Graph G, denoted L(G), is the n by n matrix defined 
as follows: 

 

A laplacian matrix has then, if two vertices are 
adjacent, the degrees of each vertex along its 
diagonal axis, and a −1 elsewhere. The other entries 
consist of all zeros, otherwise. 

If we define D0(G) to be a diagonal matrix whose 
entries are the degrees of each vertex, then the 
Laplacian Matrix of a graph G can be equivalently 
defined as 

 

Significantly, in terms of incidence matrices 
Laplacian Matrices can also be expressed. The 
Laplacian matrix of G can be expressed in terms of 
the incidence matrix when assigning arbitrary 
orientations to graph G — that is to say assign a 
fixed, arbitrary path to edge of the oriented 
representation: 

 

For example, take the basic graph in Figure 6: 

 

Figure 6: Laplacian Matrix 

The Laplacian Matrix for this graph, including its 
relationship to the adjacency and incidence matrices, 
is shown in Equation 10: 

 

THE MATRIX TREE THEOREM  

A graph G tree spanning across is a tree that is a G 
sub graph. This means a spanning tree is the tree 
that is at least at one edge on the same vertex as G, 
using some E(G) sub-set. As you might imagine, it 
can quickly be a challenging task to count all the 
spanning sub trees of Graph G. An efficient solution 
exists however, and Laplacian Matrices are used. 

Theorem 1 (Matrix Tree Theorem). Let G be a 
graph of order n. Then the cofactor of any element 
of L(G) equals the number of spanning trees of G. 

This implies all Laplacian matrix cofactors are the 
same, and the common value is the number of the 
trees covering graph G! Back to the example above 
Taking the (2,3)-cofactor of the Laplacian Matrix of 
the triangle: 

 

which corresponds to the 3 spanning trees of the 
graph, depicted in Figure 7. 

 

Figure 7: The Three Spanning Trees of K3 

CONCLUSION  

The graph theory in mathematics is the study of 
graphs that are mathematical structures that model 
relationships between objects in a parallel way. A 
map consists of vertices connected by edges in this 
sense. A distinction is made between the undirected 
graphs, where the edges symmetrically link the two 
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vertices, and the direct graphs, where the edges 
connect both vertices asymmetrically; for further 
definitions and variations in the forms of graph 
generally considered, see Graph (discrete 
mathematics). Diagram is one of the major research 
objects in discrete mathematics. Graph theory, matrix 
representations related and the characteristics of 
matrix found in modern algebra. It discussed not only 
the adjacence matrices of the graphs, but also the 
more fascinating examples found in incidence 
matrices. Work explores the utility of these matrix 
representations for various graph groups, including 
decoupled graphs, complete graphs and trees. 
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