

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

130

 Journal of Advances in Science and Technology
Vol. 15, Issue No. 1, March-2018, ISSN 2230-9659

Data Provenance for Secure Internet of Things

Dr. Sridevi*

Department of Computer Science, Karnatak University, Dharwad

Abstract – Data provenance to maintain data integrity and authenticity is a significant challenge in the
Internet of Things (IoT) environments. Additionally, if the provenance metadata itself can be
communicated in a privacy preserving manner, it expands the usage of IoT systems to human societal
domains where privacy is of paramount importance. These papers present a scheme to combine data
provenance and privacy-preserving solutions. Proposed scheme merges Physical Unclonable Function
(PUF) technology with non-interactive zero-knowledge proof to provide trustworthy and dependable IoT
systems. In this context, the IoT device can anonymously send data to the corresponding server
associated with the proof of ownership. Proposed a privacy-preserving data provenance protocol. This
protocol was synthesized with Altera Quartus. It was implemented on an Altera Cyclone IV FPGA to
demonstrate its practicality and feasibility.

Keywords: IoT, AES, Diffie Hellman, etc.

- X -

1. INTRODUCTION

The Internet of Things (IoT) technology deployment
has been growing exponentially within the last
decade. IoT's are everywhere from a smart and
connected home, to hospitals, to military and
agriculture. This is still the proverbial tip of an
iceberg. The ceiling for IoT deployment still has much
further to go. This growth brings along several
challenges, especially in the area of cyber-security.
Provenance and privacy preservation are considered
two important factors within IoT cyber-security
domain due to the fact that the data is transmitted
over communication channels. More specifically, in
an IoT system, data provenance refers to the
metadata that describes the ownership, creation
process, and modification of data. Providing secure
data provenance aims to establish the trust in the
data collected among the IoT devices. Moreover,
since IoT networks are ideally open systems to allow
plug-in functionality extension, the data provenance
should be communicated in a way so that the privacy
of the provenance provider is not violated by leaking
unnecessary information. This is what a privacy
preserving data provenance model seeks to
establish. Physical Unclonable Functions (PUF) is
good candidates for providing a unique device-
specific identity. Such unique silicon biometric
identities can be a good source of data provenance.
Software PUF (SW-PUF) composes the silicon
fabrication process variation with the software input
denied execution paths to generate reproducible
randomness that is both device and software
dependent to serve as a hardware-software
fingerprint. This functionality allows the SW-PUF to
provide unique metadata to certify if a specific IoT

device executed a specific data creation or
modification program

Proposed a novel privacy preserving data
provenance model based on Physical Unclonable
Functions and Non-Interactive Zero-Knowledge
Proof systems. This framework guarantees that the
received data from an IoT device is collected from a
registered authorized device; that it can be verified
that the said authorized device ran a specific
authorized data creation or modification program;
and that the preceding two properties can be
established without revealing the device identity.
Specifically, the proposed solution contributes to
achieving the following security goals:

• Source Identity Authenticity: guarantees that
the data originated from the specific IoT
device that sent it.

• Privacy-Preserving Identity: ensures that the
real identity of the owner of the data is not
unveiled.

• Data Integrity: confirms that the data
transmitted is not tampered with.

• Device Trust: ensures that the device is not
exploited by a malicious code.

2. PRIVACY PRESERVING DATA
PROVENANCE PROTOCOL

The proposed protocol encompasses four stages.
The first stage (called the Setup and Enrolment
stage) is to generate public parameters required by

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

131

 Data Provenance for Secure Internet of Things

the following stages in the protocol. These
parameters are associated with an IoT device profile
indexed by a virtual ID assigned to an IoT device by
the server. The second stage, called authentication
stage, is to prove the identity of an IoT device to the
server ensuring its privacy. The third stage, called
Key Exchange stage, is to exchange a symmetric
key between a server and an IoT device. The last
stage, called Data Transmission and Verification
stage, is to start trusted communication between an
IoT device and the server which confirms the source
of the transmitted data. Proposed design is based on
software PUF and non-interactive zero-knowledge
proofs. The SW-PUF is used to provide a proof of
identity and root of trust for an IoT device. This type
of PUF ensures that the data generated and
processed by an IoT device is measured as it is
computed inside the IoT device itself. This is
beneficial in proving the provenance of the data.
Non-interactive zero-knowledge proofs were used to
ensure secure privacy-preserving communication
between an IoT device and a server in the
authentication process. The elliptic curve
cryptography over Binary Fields GF(2

m
) was chosen

in order to reduce the computational requirements for
the IoT devices while maintaining the security level of
other mathematical frameworks.

3. ENROLMENT AND SETUP STAGE

This stage is performed only once when an IoT
device is deployed in the field for the first time. An
IoT device and a server prepare all parameters
required to perform the authentication protocol in the
future and agree on a virtual ID for communication
with the IoT device. The following steps will be
performed by an IoT device to generate public
parameters required by the following stages:

Note, none of the parameters generated in this stage
contain sensitive information, thus, it is safe to
transmit them over an open communication channel.

Device:

• Select elliptic curve E over Binary Fields GF
(2

m
)

• Choose base point G = (Gx; Gy). Not that in
ECC, many parameters like G are points in
2-dimensional space. We will often refer to
the x and y components of such points by
notation Gx and Gy respectively.

• Compute public Key A = x_G where x is the
SW-PUF signature that has been generated
during the bootup of the device.

• Share the public parameters fG = (Gx; Gy);A
= (Ax; Ay)g with the server.

Server:

• Generate Virtual id (V id) for the device to
use in future communications.

• Store the public parameters associated with
this V id.

Authentication stage

Proposed protocol uses a unique SW-PUF signature
(x) that can be generated during the bootup phase of
the device to authenticate the execution environment
of the device, or it can be generated every time a
new data is produced or processed to authenticate
the data creation or modification step at a specific
IoT device. If a log of a sequence of data creation
and modification events at a specific IoT device
needs to be authenticated, then a chained hash of
these raw SW-PUF signatures in the order of
events' occurrence is needed. This is similar to the
way a TPM maintains platform configuration
registers (PCRs). Then, this signature hash needs to
be saved in a protected memory in the IoT device
that we will refer to as Metadata Tracking Register
(MTR). MTR's role is similar to the TPM's PCR. It
holds a chained hash of provenance metadata
evolution through creation and modification steps.

The MTR can only be updated through MTR
extension API which takes the hash of current MTR
value concatenated with the new SW-PUF signature
val as the new MTR value

MTR←h(MTR(v)||val), same as the PCR extension.
Figure 1 shows the proposed protocol for this stage.
The authentication protocol is based on non-
interactive zero-knowledge proofs These protocols
can prove the knowledge or possession of a value to
a verifier without requiring multiple interactive steps
(as in traditional zero-knowledge proofs). This
verification leaks zero information about the value
known to the prover. Let the value known to the
prover be x. The prover generates two derived
values from x, a t-value given by t = ft (x;K) - a
function of the secret value x and several public
parameters such as a key K, and potentially others
such as nonces; a s-value given by s = fs(x;K) - a
function of the secret value x and several public
parameters such as a key K, and potentially others
such as nonces. The functions fs and ft allow the
verifier to check on some mathematical properties of
s and t combined which is not likely to hold unless
the prover knows x. But s and t together do not
reveal x. The IoT device (Prover) performs the
following steps every time the device boots up to
start a trusted communication with the server
(Verifier):

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

132

 Journal of Advances in Science and Technology
Vol. 15, Issue No. 1, March-2018, ISSN 2230-9659

Figure 1: Authentication protocol

Prover: Ask the Server (Verifier) to initiate the
communication.

Verifier: Send a random nonce to the prover to
ensure that old communications cannot be reused.

Prover:

• Compute v=hash (nonce||x||all public
parameters…..).

• Compute t-value where t=v.G Note: G is
public parameter generated during enrolment

• Generate challenge c=hash(t-value||all public
parameters||…)

• Compute s-value where s=v+c.x

• Send t-value, s-value to the verifier.

Verifier:

• Compute cʹ= hash(t-value||all public
parameters||…)

• Compute tʹ-value=s.G- cʹ. Note that A is
public key generated and published during
enrolment.

• Verify that t-value= tʹ-value holds.

• Reject in case of mismatch

Once the server (verifier) authenticates the IoT
device (prover) s/he sends Virtual id (V id) to

the device for future communications. Note that V id
was generated during enrollment, but not shared with
the IoT device until after authentication. The IoT
device could update the metadata tracking register
(MTR) value as follows: MTRnew ← hash(MTRold =
SW - PUF at bootup).

This version of MTR however reveals the raw SW-
PUF bootup signature. We need to hide it

with some other random parameters. However,
cannot use non-reproducible parameters such as
time or a random nonce. An MTR digest should be

reproducible for the same sequence of bootup, data
creation, and data modification events for the
verifiability, just as PCR digests are. One solution to
this is to create a special program module called
nonce-parameter-generator (seed). When this
program executes, SW-PUF generates its signature,
which can be used as a nonce like hiding parameter.
The seed could be the bootup SW-PUF signature in
MTRold, which should be reproducible for the future
device boot ups. This is the version we propose to
use:

MTRnew ← hash(MTRold||nonce - parameter -
generator(MTRold)). The prover/device sends

this MTRnew to the server/verifier to be used in the
future steps.

4. KEY EXCHANGE STAGE

To ensure secure communication between the IoT
device and the server, we use symmetric

AES encryption algorithm for better efficiency in
place of an asymmetric encryption system. Use a
hash function with a standard key exchange based
on elliptic curve Diffie-Hellman protocol to generate
and exchange the AES key between the two parties.
The following explanation outlines the main steps:

Device:

• Choose private key kd where kd < 2
m
.

• Compute public Key Qd = kd .G. Recall that
m and G are public parameters.

• Share the public parameters (Qdx;Qdy) with
the server.

Server:

• Choose private key ks where ks < 2
m

.

• Compute public Key Qs = ks .G

• Share the public parameters (Qsx;Qsy) with
the IoT device.

Device:

• Compute shared Key Kds = kd ,Qs

• Compute AES key KAES = hash(Kds)

Server:

• Compute shared Key Kds = ks .Qd

• Compute AES key KAES = hash(Kds)

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

133

 Data Provenance for Secure Internet of Things

5. DATA TRANSMISSION AND
VERIFICATION STAGE

Proposed a transmission and verification protocol for
securing the data transmission and providing
verification of the provenance in IoT environments.
AES algorithm has been chosen to encrypt/decrypt
all the transmitted messages. The proposed protocol
consists of three phases: Init Communication: where
the IoT device initiates the communication by
sending the V id and the stored MTR value.
Generating Data: where the IoT device generates
both the data and the metadata and sends them the
server. Verify Data Provenance: where the server
verifies the data by confirming the source of the data.
The proposed protocol is shown in Figure 2. The
following steps describe each phase. This protocol
needs to be repeated for every data transmitted from
an IoT device to a server:

Figure 2: Data Transmission and Verification
protocol

Device:

• Ask the Server (Verifier) to initiate the
communication.

• Send Vid and current MTR value.

Server:

• Locate the MTR value for the received V id
and verify it.

• Reject in case of mismatch.

Device:

• Generate the data and SW-PUF signature
(metadata) of a data creation/modification
event generated by the SW-PUF.

• Update MTR value with the new metadata.

• MTRnew ← hash(MTRold||SW PUF signature).

• Send Data and metadata consisting of
MTRnew and SW-PUF (Ci;Ri) pairs to the
server.

Server:

• Verify the received metadata MTRnew and
SW PUF signature against the old value

• MTRold associated with V id by checking the
equality MTRnew = hash(MTRold||SW PUF
signature).

• Reject in case of mismatch.

• Save current time t.

• Pick a small subset of the helper SW-PUF
(Ci;Ri) pairs. Verify the existence and
integrity of SW-PUF by sending the response
Ri part of the selected subset asking the
prover to generate the corresponding Ci part
through reversible computation.

Device:

• Run the SW-PUF in reverse mode to
generate the challenge Ci corresponding to
the received Ri.

• Send Ci to the server.

Server:

• Save current time tʹ.

• Verify that (tʹ- t) < δ. This check ensures that
Ci is computed in a reverse mode. An
untruthful device would have needed more
than δ time to perform additional
computations or to retrieve it from a
secondary storage. Note that we also
assume that relative to the IoT device small
cache, the (Ci;Ri) sets are significantly
larger - preventing a cached response to
bypass reverse computation.

• Verify if the received response Rireceived
matches the response Ri from the (Ci;Ri)
pairs

• received at the MTR verification stage.

• Reject in case of mismatch.

• Update MTR value.

6. THREAT MODEL

Following are some of the objectives of an attacker
for the proposed protocol:

• Mimic an IoT device and transfer maliciously
modified data to the server. This attack
cannot be applicable in our scheme since
the IoT device identity is based on PUF
which makes it close to impossible to
generate or clone a fake identity.

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

134

 Journal of Advances in Science and Technology
Vol. 15, Issue No. 1, March-2018, ISSN 2230-9659

• Tamper or modify the data sent by a valid

IoT device. This attack can be detected by
the proposed verification protocol, where the
MTR value will not match the saved MTR
value at the server.

6.1 Implementation

Complete design of the proposed privacy-preserving
data provenance protocol has been modelled in
Verilog (HDL), simulated by ModelSim XE, synthesis
with Altera Quartus and implemented on FPGA
Altera Cyclone iv at speed of 50 MHz. The AES-128
encryption and decryption algorithm, SHA-256 hash
function, ECC over Binary Fields GF(2

233
) engine. All

the other proposed protocols in this paper also map
to the FPGA. The SW-PUF is the only component
not mapped to the FPGA since reversible
computation using transmission gate logic is not
feasible in an FPGA fabric. The data and the
metadata (SW-PUF signatures) generation was
performed in software using HSPICE k-2015.06 and
Pin tool (dynamic binary instrumentation tool).

Public-key cryptography used in the enrolment and
authentication stages was based on an Elliptic curve
over the binary field. The ECC is suitable for
resource constrained system because it can offer the
same security level as other asymmetric systems for
a much smaller key size. This implementation used
the recommended Curve B-233 presented in the
NIST FIPS Locke and Gallagher (2017) to provide
excellent security level. The 233 bits key size has
performance comparable to RSA 2048 bits key size.

6.2 Results

Implementation consumes around 40K Logic
Elements (LEs) for the IoT device and around 37K
LEs for the IoT server. Table 1 reports the LEs
needed for each step in our protocol. It takes around
118µ sec to perform the enrolment, authentication,
and key exchange protocols. About 120m sec is
required to transfer and to verify the provenance of 1
megabyte of data and metadata. Table 2 records the
average execution time for each step in our protocol.
Note that all the verification steps take about the
same time, but the transmission & verification time
dominates.

Table 1 Performance results (Total Logic
Elements(Les))

Table 2 Performance Results (Execution Time)

7. CONCLUSION

In this paper, privacy-preserving data provenance
solution that merges Physical Unclonable Function
(PUF) technology with non-interactive zero
knowledge proof to provide trustworthy and
dependable IoT systems. Proposed scheme, an IoT
device can anonymously send data to an IoT server.
The server enrols an IoT device and verifies all the
provenance metadata for data creation and
modification. The proposed protocol has been
designed and synthesized with Altera Quartus and
implemented on FPGA Altera Cyclone iv.

REFERENCES

[1] Abdel-Basset, M., Manogaran, G.,
Mohamed, M., and Rushdy, E. (2017).
Internet of things in smart education
environment: Supportive framework in the
decision-making process. Concurrency and
Computation: Practice and Experience,
31(10):e4515.

[2] Adhikary, T., Jana, A. D., Chakrabarty, A.,
and Jana, S. K. (2017). The internet of
things (iot) augmentation in healthcare: An
application analytics. In International
Conference on Intelligent Computing and
Communication Technologies, pages 576-
583. Springer.

[3] Alharbi, K. and Lin, X. (2017). Pdp: A
privacy-preserving data provenance
scheme. In 2017 32

nd
 International

Conference on Distributed Computing
Systems Workshops, pages 500-505. IEEE.

[4] Aman, M. N., Chua, K. C., and Sikdar, B.
(2017). Secure data provenance for the
internet of things. In Proceedings of the 3rd
ACM International Workshop on IoT
Privacy, Trust, and Security, pages 11-14.
ACM.

[5] Conti, M., Dehghantanha, A., Franke, K.,
and Watson, S. (2018). Internet of things
security and forensics: Challenges and
opportunities.

[6] Jaigirdar, F. T., Rudolph, C., and Bain, C.
(2017). Can i trust the data i see?: A

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

135

 Data Provenance for Secure Internet of Things

physician's concern on medical data in iot
health architectures. In Proceedings of the
Australasian Computer Science Week
Multiconference, page 27. ACM.

[7] Javaid, U., Aman, M. N., and Sikdar, B.
(2018). Blockpro: Blockchain based data
provenance and integrity for secure iot
environments. In Proceedings of the 1st
Workshop on Blockchain-enabled Networked
Sensor Systems, pages 13-18. ACM.

[8] Kamal, M. et al. (2018). Light-weight security
and data provenance for multi-hop internet of
things. IEEE Access, 6: pp. 34439-34448.

[9] Lu, Y. and Da Xu, L. (2018). Internet of
things (iot) cybersecurity research: a review
of current research topics. IEEE Internet of
Things Journal, 6(2): pp. 2103-2115.

[10] Ray, P. P. (2018). A survey on internet of
things architectures. Journal of King Saud
University- Computer and Information
Sciences, 30(3):pp. 291-319.

Corresponding Author

Dr. Sridevi*

Department of Computer Science, Karnatak
University, Dharwad

