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Abstract – Data provenance to maintain data integrity and authenticity is a significant challenge in the 
Internet of Things (IoT) environments. Additionally, if the provenance metadata itself can be 
communicated in a privacy preserving manner, it expands the usage of IoT systems to human societal 
domains where privacy is of paramount importance. These papers present a scheme to combine data 
provenance and privacy-preserving solutions. Proposed scheme merges Physical Unclonable Function 
(PUF) technology with non-interactive zero-knowledge proof to provide trustworthy and dependable IoT 
systems. In this context, the IoT device can anonymously send data to the corresponding server 
associated with the proof of ownership. Proposed a privacy-preserving data provenance protocol. This 
protocol was synthesized with Altera Quartus. It was implemented on an Altera Cyclone IV FPGA to 
demonstrate its practicality and feasibility. 
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1. INTRODUCTION 

The Internet of Things (IoT) technology deployment 
has been growing exponentially within the last 
decade. IoT's are everywhere from a smart and 
connected home, to hospitals, to military and 
agriculture. This is still the proverbial tip of an 
iceberg. The ceiling for IoT deployment still has much 
further to go. This growth brings along several 
challenges, especially in the area of cyber-security. 
Provenance and privacy preservation are considered 
two important factors within IoT cyber-security 
domain due to the fact that the data is transmitted 
over communication channels. More specifically, in 
an IoT system, data provenance refers to the 
metadata that describes the ownership, creation 
process, and modification of data. Providing secure 
data provenance aims to establish the trust in the 
data collected among the IoT devices. Moreover, 
since IoT networks are ideally open systems to allow 
plug-in functionality extension, the data provenance 
should be communicated in a way so that the privacy 
of the provenance provider is not violated by leaking 
unnecessary information. This is what a privacy 
preserving data provenance model seeks to 
establish. Physical Unclonable Functions (PUF) is 
good candidates for providing a unique device-
specific identity. Such unique silicon biometric 
identities can be a good source of data provenance. 
Software PUF (SW-PUF) composes the silicon 
fabrication process variation with the software input 
denied execution paths to generate reproducible 
randomness that is both device and software 
dependent to serve as a hardware-software 
fingerprint. This functionality allows the SW-PUF to 
provide unique metadata to certify if a specific IoT 

device executed a specific data creation or 
modification program 

Proposed a novel privacy preserving data 
provenance model based on Physical Unclonable 
Functions and Non-Interactive Zero-Knowledge 
Proof systems. This framework guarantees that the 
received data from an IoT device is collected from a 
registered authorized device; that it can be verified 
that the said authorized device ran a specific 
authorized data creation or modification program; 
and that the preceding two properties can be 
established without revealing the device identity. 
Specifically, the proposed solution contributes to 
achieving the following security goals: 

• Source Identity Authenticity: guarantees that 
the data originated from the specific IoT 
device that sent it. 

• Privacy-Preserving Identity: ensures that the 
real identity of the owner of the data is not 
unveiled. 

• Data Integrity: confirms that the data 
transmitted is not tampered with. 

• Device Trust: ensures that the device is not 
exploited by a malicious code. 

2. PRIVACY PRESERVING DATA 
PROVENANCE PROTOCOL 

The proposed protocol encompasses four stages. 
The first stage (called the Setup and Enrolment 
stage) is to generate public parameters required by 
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the following stages in the protocol. These 
parameters are associated with an IoT device profile 
indexed by a virtual ID assigned to an IoT device by 
the server. The second stage, called authentication 
stage, is to prove the identity of an IoT device to the 
server ensuring its privacy. The third stage, called 
Key Exchange stage, is to exchange a symmetric 
key between a server and an IoT device. The last 
stage, called Data Transmission and Verification 
stage, is to start trusted communication between an 
IoT device and the server which confirms the source 
of the transmitted data. Proposed design is based on 
software PUF and non-interactive zero-knowledge 
proofs. The SW-PUF is used to provide a proof of 
identity and root of trust for an IoT device. This type 
of PUF ensures that the data generated and 
processed by an IoT device is measured as it is 
computed inside the IoT device itself. This is 
beneficial in proving the provenance of the data. 
Non-interactive zero-knowledge proofs were used to 
ensure secure privacy-preserving communication 
between an IoT device and a server in the 
authentication process. The elliptic curve 
cryptography over Binary Fields GF(2

m
) was chosen 

in order to reduce the computational requirements for 
the IoT devices while maintaining the security level of 
other mathematical frameworks. 

3. ENROLMENT AND SETUP STAGE 

This stage is performed only once when an IoT 
device is deployed in the field for the first time. An 
IoT device and a server prepare all parameters 
required to perform the authentication protocol in the 
future and agree on a virtual ID for communication 
with the IoT device. The following steps will be 
performed by an IoT device to generate public 
parameters required by the following stages: 

Note, none of the parameters generated in this stage 
contain sensitive information, thus, it is safe to 
transmit them over an open communication channel. 

Device: 

• Select elliptic curve E over Binary Fields GF 
(2

m
) 

• Choose base point G = (Gx; Gy). Not that in 
ECC, many parameters like G are points in 
2-dimensional space. We will often refer to 
the x and y components of such points by 
notation Gx and Gy respectively. 

• Compute public Key A = x_G where x is the 
SW-PUF signature that has been generated 
during the bootup of the device. 

• Share the public parameters fG = (Gx; Gy);A 
= (Ax; Ay)g with the server. 

 

Server: 

• Generate Virtual id (V id) for the device to 
use in future communications. 

• Store the public parameters associated with 
this V id. 

Authentication stage 

Proposed protocol uses a unique SW-PUF signature 
(x) that can be generated during the bootup phase of 
the device to authenticate the execution environment 
of the device, or it can be generated every time a 
new data is produced or processed to authenticate 
the data creation or modification step at a specific 
IoT device. If a log of a sequence of data creation 
and modification events at a specific IoT device 
needs to be authenticated, then a chained hash of 
these raw SW-PUF signatures in the order of 
events' occurrence is needed. This is similar to the 
way a TPM maintains platform configuration 
registers (PCRs). Then, this signature hash needs to 
be saved in a protected memory in the IoT device 
that we will refer to as Metadata Tracking Register 
(MTR). MTR's role is similar to the TPM's PCR. It 
holds a chained hash of provenance metadata 
evolution through creation and modification steps. 

The MTR can only be updated through MTR 
extension API which takes the hash of current MTR 
value concatenated with the new SW-PUF signature 
val as the new MTR value 

MTR←h(MTR(v)||val), same as the PCR extension. 
Figure 1 shows the proposed protocol for this stage. 
The authentication protocol is based on non-
interactive zero-knowledge proofs These protocols 
can prove the knowledge or possession of a value to 
a verifier without requiring multiple interactive steps 
(as in traditional zero-knowledge proofs). This 
verification leaks zero information about the value 
known to the prover. Let the value known to the 
prover be x. The prover generates two derived 
values from x, a t-value given by t = ft (x;K) - a 
function of the secret value x and several public 
parameters such as a key K, and potentially others 
such as nonces; a s-value given by s = fs(x;K) - a 
function of the secret value x and several public 
parameters such as a key K, and potentially others 
such as nonces. The functions fs and ft allow the 
verifier to check on some mathematical properties of 
s and t combined which is not likely to hold unless 
the prover knows x. But s and t together do not 
reveal x. The IoT device (Prover) performs the 
following steps every time the device boots up to 
start a trusted communication with the server 
(Verifier): 
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Figure 1:  Authentication protocol 

Prover: Ask the Server (Verifier) to initiate the 
communication. 

Verifier: Send a random nonce to the prover to 
ensure that old communications cannot be reused. 

Prover: 

• Compute v=hash (nonce||x||all public 
parameters…..). 

• Compute t-value where t=v.G    Note: G is 
public parameter generated during enrolment 

• Generate challenge c=hash(t-value||all public 
parameters||…) 

• Compute s-value where s=v+c.x 

• Send t-value, s-value to the verifier. 

Verifier: 

• Compute cʹ= hash(t-value||all public 
parameters||…) 

• Compute tʹ-value=s.G- cʹ. Note that A is 
public key generated and published during 
enrolment. 

• Verify that t-value= tʹ-value holds. 

• Reject in case of mismatch 

Once the server (verifier) authenticates the IoT 
device (prover) s/he sends Virtual id (V id) to 

the device for future communications. Note that V id 
was generated during enrollment, but not shared with 
the IoT device until after authentication. The IoT 
device could update the metadata tracking register 
(MTR) value as follows: MTRnew ← hash(MTRold = 
SW - PUF at bootup). 

This version of MTR however reveals the raw SW-
PUF bootup signature. We need to hide it 

with some other random parameters. However, 
cannot use non-reproducible parameters such as 
time or a random nonce. An MTR digest should be 

reproducible for the same sequence of bootup, data 
creation, and data modification events for the 
verifiability, just as PCR digests are. One solution to 
this is to create a special program module called 
nonce-parameter-generator (seed). When this 
program executes, SW-PUF generates its signature, 
which can be used as a nonce like hiding parameter. 
The seed could be the bootup SW-PUF signature in 
MTRold, which should be reproducible for the future 
device boot ups. This is the version we propose to 
use: 

MTRnew ←  hash(MTRold||nonce - parameter - 
generator(MTRold)). The prover/device sends 

this MTRnew to the server/verifier to be used in the 
future steps. 

4. KEY EXCHANGE STAGE 

To ensure secure communication between the IoT 
device and the server, we use symmetric 

AES encryption algorithm for better efficiency in 
place of an asymmetric encryption system. Use a 
hash function with a standard key exchange based 
on elliptic curve Diffie-Hellman protocol to generate 
and exchange the AES key between the two parties. 
The following explanation outlines the main steps: 

Device: 

• Choose private key kd where kd < 2
m
. 

• Compute public Key Qd = kd .G. Recall that 
m and G are public parameters. 

• Share the public parameters (Qdx;Qdy) with 
the server. 

Server: 

• Choose private key ks where ks < 2
m 

. 

• Compute public Key Qs = ks .G 

• Share the public parameters (Qsx;Qsy) with 
the IoT device. 

Device: 

• Compute shared Key Kds = kd ,Qs 

• Compute AES key KAES = hash(Kds) 

Server: 

• Compute shared Key Kds = ks .Qd 

• Compute AES key KAES = hash(Kds) 
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5. DATA TRANSMISSION AND 
VERIFICATION STAGE 

Proposed a transmission and verification protocol for 
securing the data transmission and providing 
verification of the provenance in IoT environments. 
AES algorithm has been chosen to encrypt/decrypt 
all the transmitted messages. The proposed protocol 
consists of three phases: Init Communication: where 
the IoT device initiates the communication by 
sending the V id and the stored MTR value. 
Generating Data: where the IoT device generates 
both the data and the metadata and sends them the 
server. Verify Data Provenance: where the server 
verifies the data by confirming the source of the data. 
The proposed protocol is shown in Figure 2. The 
following steps describe each phase. This protocol 
needs to be repeated for every data transmitted from 
an IoT device to a server: 

 

Figure 2: Data Transmission and Verification 
protocol 

Device: 

• Ask the Server (Verifier) to initiate the 
communication. 

• Send Vid and current MTR value. 

Server: 

• Locate the MTR value for the received V id 
and verify it. 

• Reject in case of mismatch. 

Device: 

• Generate the data and SW-PUF signature 
(metadata) of a data creation/modification 
event generated by the SW-PUF. 

• Update MTR value with the new metadata. 

• MTRnew  ← hash(MTRold||SW PUF signature). 

• Send Data and metadata consisting of 
MTRnew and SW-PUF (Ci;Ri) pairs to the 
server. 

Server: 

• Verify the received metadata MTRnew and 
SW PUF signature against the old value 

• MTRold associated with V id by checking the 
equality MTRnew = hash(MTRold||SW PUF 
signature). 

• Reject in case of mismatch. 

• Save current time t. 

• Pick a small subset of the helper SW-PUF 
(Ci;Ri) pairs. Verify the existence and 
integrity of SW-PUF by sending the response 
Ri part of the selected subset asking the 
prover to generate the corresponding Ci part 
through reversible computation. 

Device: 

• Run the SW-PUF in reverse mode to 
generate the challenge Ci corresponding to 
the received Ri. 

• Send Ci to the server. 

Server: 

• Save current time tʹ. 

• Verify that (tʹ- t) < δ. This check ensures that 
Ci is computed in a reverse mode. An 
untruthful device would have needed more 
than δ time to perform additional 
computations or to retrieve it from a 
secondary storage. Note that we also 
assume that relative to the IoT device small 
cache, the (Ci;Ri) sets are significantly 
larger - preventing a cached response to 
bypass reverse computation. 

• Verify if the received response Rireceived 
matches the response Ri from the (Ci;Ri) 
pairs 

• received at the MTR verification stage. 

• Reject in case of mismatch. 

• Update MTR value. 

6. THREAT MODEL 

Following are some of the objectives of an attacker 
for the proposed protocol: 

• Mimic an IoT device and transfer maliciously 
modified data to the server. This attack 
cannot be applicable in our scheme since 
the IoT device identity is based on PUF 
which makes it close to impossible to 
generate or clone a fake identity. 
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• Tamper or modify the data sent by a valid 

IoT device. This attack can be detected by 
the proposed verification protocol, where the 
MTR value will not match the saved MTR 
value at the server. 

6.1 Implementation 

Complete design of the proposed privacy-preserving 
data provenance protocol has been modelled in 
Verilog (HDL), simulated by ModelSim XE, synthesis 
with Altera Quartus and implemented on FPGA 
Altera Cyclone iv at speed of 50 MHz. The AES-128 
encryption and decryption algorithm, SHA-256 hash 
function, ECC over Binary Fields GF(2

233
) engine. All 

the other proposed protocols in this paper also map 
to the FPGA. The SW-PUF is the only component 
not mapped to the FPGA since reversible 
computation using transmission gate logic is not 
feasible in an FPGA fabric. The data and the 
metadata (SW-PUF signatures) generation was 
performed in software using HSPICE k-2015.06 and 
Pin tool (dynamic binary instrumentation tool). 

Public-key cryptography used in the enrolment and 
authentication stages was based on an Elliptic curve 
over the binary field. The ECC is suitable for 
resource constrained system because it can offer the 
same security level as other asymmetric systems for 
a much smaller key size. This implementation used 
the recommended Curve B-233 presented in the 
NIST FIPS Locke and Gallagher (2017) to provide 
excellent security level. The 233 bits key size has 
performance comparable to RSA 2048 bits key size. 

6.2 Results 

Implementation consumes around 40K Logic 
Elements (LEs) for the IoT device and around 37K 
LEs for the IoT server. Table 1 reports the LEs 
needed for each step in our protocol. It takes around 
118µ sec to perform the enrolment, authentication, 
and key exchange protocols. About 120m sec is 
required to transfer and to verify the provenance of 1 
megabyte of data and metadata. Table 2 records the 
average execution time for each step in our protocol. 
Note that all the verification steps take about the 
same time, but the transmission & verification time 
dominates. 

Table 1 Performance results (Total Logic 
Elements(Les)) 

 

Table 2 Performance Results (Execution Time) 

 

7. CONCLUSION 

In this paper, privacy-preserving data provenance 
solution that merges Physical Unclonable Function 
(PUF) technology with non-interactive zero 
knowledge proof to provide trustworthy and 
dependable IoT systems. Proposed scheme, an IoT 
device can anonymously send data to an IoT server. 
The server enrols an IoT device and verifies all the 
provenance metadata for data creation and 
modification. The proposed protocol has been 
designed and synthesized with Altera Quartus and 
implemented on FPGA Altera Cyclone iv. 
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