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Abstract – The Gaussian isoperimetric inequality, and its related concentration phenomenon, is one of 
the most important properties of Gaussian measures. These notes aim to present, in a concise and self-
contained form, the fundamental results on Gaussian processes and measures based on the 
isoperimetric tool. In particular, our exposition will include, from this modern point of view, some of the 
by now classical aspects such as inerrability and tail behavior of Gaussian semi norms, large deviations 
or regularity of Gaussian sample paths. We will also concentrate on some of the more recent aspects of 
the theory which deal with small ball probabilities. 

Actually, the Gaussian concentration inequality will be the opportunity to develop some functional 
analytic ideas around the concentration of measure phenomenon. In particular, we will see how simple 
semigroup tools and the geometry of abstract Markov generator may be used to study concentration and 
isoperimetric inequalities. We investigate in this context some of the deep connections between 
isoperimetric inequalities and functional inequalities of Sobolev type. We also survey recent workon 
concentration inequalities in product spaces. Actually, although the main themeis Gaussian isoperimetry 
and analysis, many ideas and results have a much broader range of applications. We will try to indicate 
some of the related fields of interest. 

---------------------------♦----------------------------- 
 

INTRODUCTION  

The Gaussian isoperimetric inequality was developed 
extensively in the study of the functional analytic 
aspects of probability theory. Here, we only present it 
to illustrate it‘s power in Information theory. We begin 
with a definition of a measure. In 1,2 and 3 
dimensional Euclidean space, there exists simple and 
intuitive concepts of measure. We speak of the length 
of a line segment, area under a curve and the volume 
of a sphere for instance. The concepts of length, area 
and volume are familiar concepts. It is only natural that 
there exists a generalization of the principal concept of 
measure in higher dimensions. 

Theorem 1 : Among all sets in with prescribed 
Gassian measure, half spaces have minimal Gaussian 
perimeter. 

Definition 1.1 A set of sets S is said to be pairwise 

disjoint iff:  

 

It has been mentioned that measure is a 
generalisation of volume. Without an explicit definition 
of a measurable space, we can further explain what a 
measure is. A measure is a function which takes an 

element X(of a measurable space ) and returns a 
non-negative number which we will refer to as the 
"measure of X”. We denote the measure 

by . Further, in addition to 
non-negativity, a measure satisfies the following 
properties. 

1.  

2. Countable Additivity Let  be a 
sequence of pairwise disjoint sets. Then, 

 

A Gaussian measure is probability measure. This 
means that is a special case of a measure. It satisfies 
non-negativity and countable additivity properties. 
However, it has an additional property that t is 

normalized, that is,  
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One can split n dimensional space with an-1 
dimensional hyperplane. A halfspace is simply the 
space which remains after the section of the space 
which falls on one side of the hyperplane is removed. 

Definition 1.2 Let be a
 probability measure on the given measurable 

space. We say that is a Gaussian measure if it is 
defined by 

 

where denotes the length of vectors in  

In order to gather intuition on the Gaussian 
isoperimetric inequality, we begin by restating the 
classical isoperimetric inequality. Among all compact 

sets A in with a smooth boundary and with a 
fixed volume, Euclidean balls are the ones with the 
minimal surface measure. The surface measure we 
were concerned with was the perimeter. The notion 
behind the Gaussian isoperimetric inequality is similar. 
The measure, however, is different as we now focus 
on the Gaussian measure. Also there exists a Steiner 
symmetrization equivalent in the context of the 
Gaussian isoperimetric inequality. It is known as 
Gaussian symmetrization. A formal presentation of the 
Gaussian isoperimetric inequality is presented by both 
Rosand Ledoux. 

The isoperimetric inequality for the standard Gaussian 

measure on  with 

density , can be 

stated as follows: for every measurable set , 
we have 

 (1) 

In other words, if we define by the 

equation , then 

Clearly, this 

inequality is an equality for affine half-spaces in  

Recently, Bobkov proved a functional version of the 
Gaussian isoperimetry: for every locally Lipschitz 

function , one has 

 (2) 

It is easy to see that this inequality implies (1). Bobkov 
deduces (2) from the following ―two-point‖ isoperimetric 

inequality: for all , 

  (3) 

Using the remarkable tensorisation properties of this 
inequality and the central limit theorem, Bobkov shows 

that (3) implies (2). Inequality (2) for can also be 

proved from (1) for by choosing to 

be the subgraph of . 

Gaussian Isoperimetry 

For a Borel set A in and let = 

{  < t for some } be the open t-
enlargement of A, where B^ denotes the open unit 

Euclidean ball in . The classical isopcrimctric 
inequality for the Lcbesguc measure states that if 

 for t > 0. 
In the early 70's C. Borell and V.N. Sudakov and B.S. 
Tsirel'son proved independently the isopcrimctric 
property of Gaussian measures. 

Theorem 2 : Let A be a Borel set in and let H be an 

affine halfspa.ee such that for 

some . Then 

 

Theorem  has an equivalent differential analog. To 

state it let us define for a measure on and any 

Borel set A the boundary -measure of A by the 

formula  

Moreover let  

and let  be the 
Gaussian isoperimetric function. 

The equivalent form of Theorem is that for all Borel 

sets A in  

The equality in above equation holds for any affine 
halfspace. 

For a probability measure on we may define 

the isoperimetric function of by 
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Only few cases arc known when one can determine 

exactly . For Gaussian measures (2) states 

that  

Let us finish section  by an example of application of 
equation. 

Corollary 1 Let X be a centered Gaussian random, 

vector in a separable Banach space . Then for 

any  

 

where 

 

SOME ISOPERIMETRIC INEQUALITIES 

In this study, we present the basic isoperimetric 
inequalities which form the geometric background of 
this study. Although we will not directly be concerned 
with true isoperimetric problems and description of 
extremal sets later on. these inequalities are at the 
basis of the concentration inequalities on which most 
results of these notes will be based. We introduce the 
isoperimetric ideas with the classical isoperimetric 

inequality on  but the main result will actually be 
the isoperimetric property on spheres and its limit 
version, the Gaussian isoperimetric inequality. More on 
isoperimetry may be found. 

The classical isoperimetric inequality in, which at least 
in dimension 2 and for convex sets may be considered 
as one of the oldest mathematical statements, asserts 
that among all compact sets A in IR

n
 with smooth 

boundary and with fixed volume, Euclidean balls 
are the ones with the minimal surface measure. I11 

other words, whenever where D 
is a ball (and n > 1), 

  (4) 

There is an equivalent, although less familiar, 
formulation of this result in terms of isoperimetric 
neighborhoods or enlargements which in particular 
avoids surface measures and boundary 
considerations; namely, if Ar denotes the (closed) 

Euclidean neighborhood of A of order , and if D is 
as before a ball with the same volume as A. then, for 

every , 

  (5) 

Note that Ar is simply the Minkowski sum A + B(0, r) of 
A and of the (closed) Euclidean ball B(0, r) with center 
the origin and radius r. The equivalence between (4) 
and (5) follows from the Minkowski content formula 

 

(whenever the boundary of A is regular enough). 
Actually, if we take the latter as the definition 

of , it is not too difficult to see that 
(4) and (5) are equivalent for every Borel set A. The 
simplest proof of this isoperimetric inequality goes 
through the Brunn-Minkowski inequality which states 

that if A and D are two compact sets in , then 

 (6) 

To deduce the isoperimetric inequality (5) from the 

Brunn-Minkowski inequality (6), let be such 

that . Then, by (6), 

 

As an illustration of the methods, let us briefly sketch 
the proof of the Brunn- Minkowski inequality (6). By a 
simple approximation procedure, we may assume 
that each of A and D is a union of finitely many 
disjoint sets, each of which is a product of intervals 
with edges parallel to the coordinate axes. The proof 
is by induction on the total number p of these 
rectangular boxes in A and D. If p = 2, that is if A and 
D are products of intervals with sides of 

length and respectively, then 

 

where we have used the inequality between 
geometric and arithmetic means. Now, assume that A 
and D consist of a total of p > 2 products of intervals 
and that (6) holds for all sets A' and D' which are 
composed of a total of at most p— 1 rectangular 
boxes. We may and do assume that the number of 
rectangular boxes in A is at least 2. Parallel shifts of A 
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and D do not change the volume of A, D or A + D. 
Take then a shift of A with the property that one of the 
coordinate hyperplanes divides A in such a way that 
there is at least one rectangular box in A on each side 
of this hyperplane. Therefore A is the union of A’ and 
A” where A’ and A” are disjoint unions of a number of 
rectangular boxes strictly smaller than the number in 
A. Now shift D parallel to the coordinate axes in such a 
manner that the same hyperplane divides D into B' and 

B" with  

Each of B' and B" has at most the same number of 
products of intervals as B has. Now, by the induction 
hypothesis, 

 

which is the result. Notethat, by concavity, (6) implies 

(is actually equivalent to the fact) that, for every in 
[0,1], 

 

 

ISOPERIMETRIC INEQUALITY FOR r-SETS 

Isoperimetric problems are classical objects of study in 
mathematics. In general, they ask for the smallest 
possible ‗boundary‘ of a set of a certain ‗size‘. For 
example, of all shapes in the plane with area 1, which 
has the smallest perimeter? The ancient Greeks ‗knew‘ 
that the answer was a circle, but it was not until the 
19th century that this was proved rigorously. 

In the last fifty years, discrete isoperimetric problems 
have been extensively studied. These deal with 
notions of boundary in graphs. Here, there are two 
competing notions of boundary. If G = (V, E) is a 

graph, and , the vertex-boundary of S in G is 
the set of all vertices in V \ S which have a neighbour 
in S. Similarly, the edy e-boundary of S in G is the set 
of all edges of G between S and V \ S. The vertex-
isoperimetric problem for G asks for the minimum 
possible size of the vertex-boundary of a k-element 

subset of V, for each . Similarly, the edy e-iso 
perimetric problem for G asks for the minimum 
possible size of the edge-boundary of a k-element 

subset of V, for each  

For surveys of discrete isoperimetric inequalities from 
a combinatorial perspective, for a discussion of the 
connection with concentration of measure, and for 
several applications, notably in geometric probability 
and percolation theory. 

A fundamental example arises from taking our graph G 

to be the n-dimensional hypercube , the graph 

on where x and y are adjacent if they differ in 
exactly one coordinate. It turns out that the edge-
boundary of a k-element set is minimized by taking the 

first k elements of the binary ordering on . 
Hart‘s proof uses induction on /r, combined with an 
inequality concerning the number of l‘s in initial 

segments of the binary ordering on  

The vertex-isoperimetric problem for Qn was solved 

by Harper. To state it, we identify {0,1 }
n
 with , 

the power-set of [n], by identifying  

with the set . Harper‘s Theorem 
states that the vertex-boundary of a k-element subset 

of is minimized by taking the first k elements of 

the simplicial ordering on . (If , we 
say that x < y in the simplicial ordering 

if , or and min( .) 

Note that if k is of the form , then the first 
k elements of the simplicial ordering are simply all the 
subsets of [n] with size at most d, i.e. the Hamming 

ball with centre and radius d. 

Both theorems can be proved using compressions. 
However, this technique relies upon the fact that the 
extremal examples are ‗nested‘; isoperimetric 
problems without this property require other 
techniques, and tend to be harder. 

GAUSSIAN ISOPERIMETRY FOR MULTIPLE 
SETS 

Classical isoperimetry can be traced to ancient times, 
though its full understanding still remains incomplete. 
Generally speaking, we look for an object with least 
perimeter among all objects of fixed volume. And we 
expect that the smallest perimeter object has a 
simple structure. For example, if our notions of 
volume and perimeter have some symmetry, we 
expect the smallest perimeter object of fixed volume 
to also exhibit some symmetries. Since the Euclidean 
volume and Euclidean surface area are highly 
symmetric, we expect that the set of fixed Euclidean 
volume and least Euclidean perimeter will be highly 
symmetric. However, symmetry considerations are 
often insufficient to find a set of least perimeter. 

The classical isoperimetric problem asks for a 
Euclidean set of fixed Euclidean measure and 
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minimal surface area. The solution of this problem, the 
Euclidean ball, has been known since antiquity. 
Steiner nearly proved this fact in 1838 using 
symmetrization . Steiner showed that, starting from a 
fixed Euclidean set A, it is possible to create a more 
symmetric set from A with the same volume and 
smaller or equal surface area. This argument was 
made rigorous by Weierstrass. We can think of 
symmetrization as a gradient descent method. That is, 
starting from any set, there exists a way to decrease 
the perimeter of this set, such that we are now closer 
to a least perimeter object, with respect to some 
metric. 

In this way, the classical isoperimetric problem can be 
intuitively understood as maximizing a concave 
function over a convex set. The standard reference for 
symmetrization methods, where several previous 
approaches are unified. 

Hurwitz solved the isoperimetric problem in the plane 
using the rather striking method of Fourier series in 
1902. Given a non-intersecting closed rectifiable curve 
in the plane, the curve can be represented as a 
periodic function of one real variable with convergent 
Fourier series. Then, Fourier analysis shows that the 
perimeter is smallest when all higher order Fourier 
coefficients are zero. Surprisingly, it is still an open 
problem to try to extend his proof to all Euclidean 
spaces. Yet, for convex bodies, the essence of his 
proof can be used, since in that case, one can express 
a convex body as a function on the sphere, and then 
expand this function into spherical harmonics. 

In the mid-1900s, mathematicians began to solve 
isoperimetric problems in spaces other than Euclidean 
space. In the sphere, the set of fixed volume and 
smallest boundary is a cap, or geodesic ball, as shown 
by Levy. A nice proof of this fact by symmetrization 
appears. Levy's result was generalized by Gromov in 
the 1980s. Gromov's result says that in a smooth 
manifold with Ricci curvature bounded below by a 
positive number R, the boundary of any set is greater 
than the boundary of a geodesic ball on a sphere with 
Ricci curvature R. 

Gromov used the methods of comparison geometry, 
and he realized that a crucial result of Almgren gave 
the existence and regularity for Gromov's isoperimetric 
problem. 

We should mention that existence and regularity of 
isoperimetric problems has been an important issue. In 
particular, Steiner‘s avoidance of this issue led to the 
error in his proof. In the mid-1970s, Almgren achieved 
a breakthrough in regularity theory which would 
change the entire direction of isoperimetric theory pQ. 
As we just mentioned, this result allowed Gromov‘s 
general isoperimetric inequality. However, Almgren‘s 
result also gave the existence and regularity for a wide 
class of isoperimetric problems, including problems 
involving multiple sets. The two set isoperimetric 
problem or double bubble problem asks for two 

Euclidean sets of fixed volume and smallest combined 
surface area. That is, if we have two sets A1,A2 of 
fixed Euclidean volume, how can we minimize volume 

of ? 

Thanks to the rigorous foundation given to this ancient 
problem, the double bubble problem was finally solved 
in 2002. Essentially nothing is known when try to solve 
this problem for three or more sets. That is, if we are 
given three sets A1,A2,A3 of fixed Euclidean volume, 
we cannot find the minimum volume of 

. The three set case of this 
problem in the plane was solved in 2004 by 
Wichiramala by a variational argument which 
considers over fifty separate cases. So, the proof does 
not seem to generalize to higher dimensions. 

Concurrent with Almgren‘s existence and regularity 
result, even more isoperimetric inequalities were 
investigated. In particular, the isoperimetric problem 
with respect to the Gaussian measure was 
investigated. This measure could be considered 
natural in light of the Central Limit Theorem, or the 
fact that it is the unique rotation invariant product 
probability measure on Euclidean space. We now 
need to introduce some notation to state the 
Gaussian isoperimetric problem. 

Let , , let , 

define , and define 

 (7) 

Let be a set with smooth 

boundary and let be a half-space. 

That is, H is the region that lies on one side of a 
hyperplane. Denote the Gaussian perimeter 

of by

 

The Gaussian Isoperimetric Inequality says that the 
half-space H has the smallest Gaussian boundary 
among all sets of fixed Gaussian volume. 
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