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Abstract – Operation research not only a necessary tool in the development of modern algebra in general 
and Universal algebra in particular. Operation research plays a major role in simplifying, unifying and 
generalizing many aspects of Mathematics and resembles Group theory, General topology and Functional 
analysis, because its central concept that of order, inter wines through almost all mathematics. The beauty 
of Operation research is in its extreme simplicity of the basic concept, which is order or partial order, one 
gets interesting generalization of lattice concept by dropping one or more of the lattice identities.  
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INTRODUCTION 

In 1854, George Boole (1815–1864) introduced an 
important class of algebraic structures in his research 
work on mathematical logic. In his honor these 
structures have been called Boolean algebras. These 
are special type of lattices. In particular, congruence 
lattices play an important role. It was E.Schroder, who 
about 1890, considered the lattice concept in today‘s 
sense.  

At approximately the same time, R.Dedikind developed 
a similar concept in his work on groups and ideals. 
Dedikind defined modular and distributive lattices 
which are types of lattices of that are important in 
applications. The rapid development of lattice theory 
started around 1930. We could say that Boolean 
lattices or Boolean algebras are the simplest and at the 
same time the most important lattices for applications. 

It was Garrett Birkhoff‘s work in the mid-thirties that 
started the general development of lattice theory. In a 
Brilliant series of papers he demonstrated the 
importance of the lattice theory and showed that it ii 
provides a unifying framework for previously unrelated 
developments in any mathematical disciplines. 

During a pivot step, we make the value of a nonbasic 
variable just large enough to get the value of a basic 
variable down to zero. This, however, might never 
happen.  

If we now try to bring x2 into the basis by increasing its 
value, we notice that none of the tableau equations 
puts a limit on the increment. We can make x2 and z 
arbitrarily large the problem is unbounded. 

By letting x2 go to infinity we get a feasible halfline - 
starting from the current BFS - as a witness for the 
unboundedness. In our case this is the set of feasible 
solutions 

 

with initial table an 

 

After one pivot step with x1 entering the basis we get 
the tableau :  

 

Such a halfline will typically be the output of the 
algorithm in the unbounded case. Thus, 
unboundedness can quite naturally be handled with 
the existing machinery. In the geometric interpretation 
it just means that the feasible polyhedron P is 
unbounded in the optimization direction. 
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While, we can make some nonbasic variable arbitrarily 
large in the unbounded case, just the other extreme 
happens in the degenerate case: some tableau 
equation limits the increment to zero so that no 
progress in z is possible. 

Study of algebraic and topological aspects of 
multiplicative lattices 

The only candidate for entering the basis is x2, but the 
first tableau equation shows that its value cannot be 
increased without making x3 negative. This may 
happen whenever in a BFS some basic variables 
assume zero value, and such a situation is called 
degenerate. Unfortunately, the impossibility of making 
progress in this case does not imply optimality, so we 
have to perform a `zero progress' pivot step. In our 
example, bringing x2 into the basis results in another 
degenerate tableau with the same BFS. 

 

Nevertheless, the situation has improved. The 
nonbasic variable x1 can be increased now, and by 
entering it into the basis, we already obtain the final 
tableau 

 

With optimal BFS x = (x1 ……..x4) = (2,2,0,0) 

In this example, after one degenerate pivot we were 
able to make progress again. In general, there might 
be longer runs of degenerate pivots. Even worse, it 
may happen that a tableau repeats itself during a 
sequence of degenerate pivots, so the algorithm can 
go through an infinite sequence of tableaus without 
ever making progress. This phenomenon is known as 
cycling, and an example can be found. If the algorithm 
does not terminate, it must cycle. This follows from the 
fact that there are only finitely many different tableaus. 

 

and assume there is another tableau T 0 with the same 
basic and nonbasic variables, i.e. T  is the system 

 

By the tableau properties, both systems have the same 
set of solutions. Therefore 

 

must hold for all d-vectors xN, and this implies  

 

Hence 

 

There are two standard ways to avoid cycling: 

• Bland's smallest subscript rule: If there is 
more than one candidate xk for entering the 
basis or more than one candidate for leaving 
the basis, which is another manifestation of 
degeneracy, choose the one with smallest 
subscript k. 

• Avoid degeneracies altogether by symbolic 
perturbation. By Bland's rule, there is always 
a way of escaping from a sequence of 
degenerate pivots. 

For this, however, one has to give up the freedom of 
choosing the entering variable. For us it will be crucial 
not to restrict the choice of the entering variable, so 
we will abandon Bland's rule and instead resort to the 
method of symbolic perturbation, although this 
requires more computational effort. 

The mathematical study of Diophantine problems that 
Diophantus initiated is now called Diophantine 
analysis. 

While individual equations present a kind of puzzle 
and have been considered throughout history, the 
formulation of general theories of Diophantine 
equations was an achievement of the twentieth 
century. 
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 Topic Name 

Finding all right triangles with integer side-lengths is 
equivalent to solving the Diophantine 

equation . 

The simplest linear Diophantine equation takes the 
form ax + by = c, where a, b and c are given integers. 
The solutions are described by the following theorem: 

This Diophantine equation has a 
solution (where x and y are integers) if and only if c is a 
multiple of the greatest common divisor of a and b. 
Moreover, if (x, y) is a solution, then the other solutions 
have the form (x + kv, y − ku), where k is an arbitrary 
integer, and u and v are the quotients of a and b 
(respectively) by the greatest common divisor 
of a and b. 

Proof:  

If d is this greatest common divisor, Bézout's 
identity asserts the existence of integers e and f such 
that ae + bf = d. If c is a multiple of d, then c = dh for 
some integer h, and (eh, fh) is a solution. On the other 
hand, for every pair of integers x and y, the greatest 
common divisor d of a and b divides ax + by.  

Thus, if the equation has a solution, then c must be a 
multiple of d. If a = ud and b = vd, then for every 
solution (x, y), we have 

a(x + kv) + b(y − ku) = ax + by + k(av − bu)   

= ax + by + k(udv − vdu) = ax + by, 

showing that (x + kv, y − ku) is another solution. 
Finally, given two solutions such 
that ax1 + by1 = ax2 + by2 = c, one deduces 
that u(x2 − x1) + v(y2 − y1) = 0.  

As u and v are coprime, Euclid's lemma shows that 

there exists an integer k such that  

and . 

Therefore,  and , which 
completes the proof. 

DISCUSSION 

One of the few general approaches is through 
the Hasse principle. Infinite descent is the traditional 
method, and has been pushed a long way. 

The depth of the study of general Diophantine 
equations is shown by the characterization of 
Diophantine sets as equivalently described as 
recursively enumerable. In other words, the general 
problem of Diophantine analysis is blessed or cursed 
with universality, and in any case is not something that 
will be solved except by re-expressing it in other terms. 

The field of Diophantine approximation deals with the 
cases of Diophantine inequalities. Here variables are 
still supposed to be integral, but some coefficients may 
be irrational numbers, and the equality sign is replaced 
by upper and lower bounds. [4] 

The most celebrated single question in the field, 
the conjecture known as Fermat's Last Theorem, was 
solved by Andrew Wiles but using tools from algebraic 
geometry developed during the last century rather than 
within number theory where the conjecture was 
originally formulated. Other major results, such 
as Faltings' theorem, have disposed of old conjectures. 

An example of an infinite diophantine equation is: 

 

which can be expressed as "How many ways can a 
given integer n be written as the sum of a square plus 
twice a square plus thrice a square and so on?" The 
number of ways this can be done for each n forms an 
integer sequence. Infinite Diophantine equations are 
related to theta functions and infinite dimensional 
lattices. This equation always has a solution for any 
positive n. Compare this to: 

 

which does not always have a solution for positive n. 

CONCLUSION 

If a Diophantine equation has as an additional 
variable or variables occurring as exponents, it is an 
exponential Diophantine equation. Examples include 

the Ramanujan–Nagell equation, , and 
the equation of the Fermat-Catalan conjecture and 

Beal's conjecture,  with inequality 
restrictions on the exponents. A general theory for 
such equations is not available; particular cases such 
as Catalan's conjecture have been tackled. However, 
the majority are solved via ad hoc methods such 
as Stormer's theorem or even trial and error. 
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