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Abstract – A graph labeling is an assignment of integers to the vertices or edges or both, subject to 
certain conditions have been motivated by practical problems, labeled graphs serve useful mathematical 
models for a broad range of applications such as: coding theory, including the design of good types 
codes, synch-set codes, missile guidance codes and convolutional codes with optimal auto correlation 
properties. Graph theory has applications in many areas of the computing, social and natural science. 
The theory is also intimately related to many branches of mathematics, including matrix theory, numerical 
analysis, probability, topology and combinatory. The fact is that graph theory serves as a mathematical 
for any system involving a binary relation. Over the last 50 year graph theory has evolved into an 
important mathematical tool in the solution of a wide variety of problems. Difference labelings of a graph 
C are acknowledged by appointing unmistakable whole number qualities to every vertex and afterward 
connecting with each edge the supreme distinction of those qualities doled out to its end vertices. Right 
now explore the presence of labelings for cycles, cartesian result of two graphs, rn-crystals, rectangular 
matrices and n-solid shapes which deteriorate these graphs into indicated parts. We likewise examine 
the comparing issue for added substance labelings. 
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INTRODUCTION 

A graph with a distinction labeling characterized on it 
is known as a labeled graph. A decomposition of a 
labeled graph into parts, each part containing the 
edges having a typical weight is called basic weight 
decomposition. A typical weight decomposition of G 
in which each part contains rn edges is called rn-fair.  

A timberland wherein every segment is a way is 
known as direct woods. Blossom and Ruiz [13] share 
demonstrated that each part for all intents and 
purpose weight decomposition is a direct timberland 
and the vertices of least and most extreme mark are 
not interior vertices in any way of a section 
containing it. Right now consider the accompanying 
issue given in [13]. 

Let C = (V E) be a graph. A distinction labeling of C 
is an infusion f from V to the set of non-negative 
numbers together with the weight function f on E 
given by f*(uv) = f(u) - f(v)I for each edge uv E.  

A graph G = (V,E) comprises of two finite sets: V(G), 
the vertex set of the graph, regularly indicated by just 
V, which is a nonempty set of elements called 
vertices, and E(G), the edge set of the graph, 
frequently signified by just E, which is a set 
(potentially empty) of elements called edges. A 
graph, at that point, can be thought of as a drawing 
or diagram comprising of an assortment of vertices 
(spots or points) together with edges (lines) joining 

certain pairs of these vertices. Figure 1 gives a 
graph G = (V, E) with V (G) = { v1, v2, v3, v4, v5 } and 
E(G) = { e1, e2, e3, e4, e5, e6, e7 }. 

 

Figure 1: A graph G with five vertices and seven 
edges 

Sometimes we speak to an edge by the two vertices 
that it interfaces. In Figure 1 we have e1 = (v1, v2), 
e2 = (v1 ,v4). An edge e of graph G is said to be 
episode with the vertex v if v is an end vertex of e. 
For example in Figure 1 an edge e1 is episode with 
two vertices v1 and v2. An edge e having 
indistinguishable end vertices called a loop. At the 
end of the day, in a loop a vertex v is joined to itself 
by an edge e. The level of a vertex v, composed 
d(v), is the number of edges occurrence with v. In 
Figure 1 we have d(v1) = 3, d(v2) = 2, d(v3) = 3, d(v4) 
= 4 and d(v5) = 2. On the off chance that for some 
positive whole number k, d(v) = k for each vertex v 
of graph G, at that point G is called k-customary.  
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The graph in Figure 1 is an associated and 
undirected graph. In contrast to most different 
territories in Mathematics, the theory of graphs has a 
definite beginning stage, when the Swiss 
mathematician Leonard Euler (1707-1783) 
considered the problems of the seven Konigsberg 
spans. In the mid eighteenth century the city of 
Konigsberg (in Prussia) was isolated into four areas 
by the Pregel waterway. Seven scaffolds associated 
these districts as appeared in Figure 2 (a).  

A graph G is called associated if there is a way 
between each pair of vertices. When there is no 
worry about the bearing of an edge the graph is 
called undirected. Areas are appeared by A, B, C, D 
individually. It is said that the townsfolk of Konigsberg 
delighted themselves by attempting to discover a 
course that crossed each extension just once (It was 
OK to go to a similar island any number of times). 

 

Figure 2: (a) A map of Konigsberg (b) A graph 
representing the bridges of Konigsberg 

Graph theory is one of the themes in a zone of 
mathematics portrayed as Discrete Mathematics. 
The problems just as the strategies for solution in 
discrete mathematics contrast on a very basic level 
from those in constant mathematics. In discrete 
mathematics we "check" the number of articles while 
in constant mathematics we "measure" their sizes. 
Albeit discrete mathematics started as right on time 
as man figured out how to check, it is ceaseless 
mathematics which has since quite a while ago ruled 
the historical backdrop of mathematics. This image 
started to change in twentieth century. The principal 
significant improvement was the change that 
occurred in the origination of mathematics. Its main 
issue transformed from the idea of a number to the 
idea of a set which was progressively reasonable to 
the techniques for discrete mathematics than to 
those of consistent mathematics. The second 
sensational point was the expanding utilization of 
PCs in the public eye. A great part of the theory of 
software engineering utilizes ideas of discrete 
mathematics.  

Euler examined whether it is conceivable to have 
such a course by utilizing the graph appeared in 
Figure 2 (b). He distributed the primary paper in 
graph theory in 1736 to show the difficulty of such a 
course and give the conditions which are important to 
allow such a walk. Graph theory was destined to 
consider problems of this sort.  

Graph theory as an individual from the discrete 
mathematics family has an amazing number of 
applications, to software engineering as well as to 

numerous different sciences (physical, organic and 
social), designing and trade. A portion of the 
significant topics in graph theory are appeared in 
Figure 3.  

 

Figure 3: Some Graph Theory 

The purpose of this study is to give a few outcomes 
in a class of problems arranged as Graph labeling. 
Leave G alone an undirected graph without loops or 
twofold associations between vertices. In labeling 
(valuation or numbering) of a graph G, we partner 
unmistakable nonnegative whole numbers to the 
vertices of G-as vertex labels (vertex esteems or 
vertex numbers) so that each edge gets a particular 
positive whole number as an edge name (edge 
worth or edge number) contingent upon the vertex 
labels of vertices which are occurrence with this 
edge.  

Enthusiasm for graph labeling started in mid-1960s 
with a guess by Kotzig-Ringel and a paper by Rosa. 
In 1967, Rosa distributed a spearheading paper on 
graph labeling problems. He called a function ƒ a β-
labeling of a graph G with n edges (Golomb along 
these lines called such labeling graceful and this 
term is presently the well-known one) if ƒ is an 
infusion from the vertices of G to the set {0, 1, …, n} 
to such an extent that, when each edge is labeled 
with the supreme estimation of the contrast between 
the labels of the two end vertices, the subsequent 
edge labels are particular. This labeling gives a 
successive labeling of the edges from 1 to the 
number of edges. Any graph that can be gracefully 
labeled is a graceful graph. 

Examples of graceful graphs are shown in Figure 4. 

 

Figure 4: Examples of graceful labeling of 
graphs 

Although numerous groups of graceful graphs are 
known, a general essential or adequate condition for 
gracefulness has not yet been found. Likewise It 
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isn't known whether all tree graphs are graceful. A α-
valuation of a graph G is a graceful valuation of G 
which likewise fulfills the accompanying condition: 
there exists a number γ (0 ≤ γ < E(G)) to such an 

extent that, for any edge e∈ E(G) with the end 

vertices u, v ∈ V(G), min { vertex name (v), vertex 
name (u) } ≤ γ < max { vertex mark (v), vertex name 
(u) }  

Obviously in the event that there exists a α-valuation 
of graph G, at that point G is a bipartite graph. The 
main graph in Figure 4 is a way with six edges and it 
has a α-labeling with γ =3.  

During the previous thirty years, more than 200 
papers on this point have been showed up in diaries. 
Despite the fact that the guess that all trees are 
graceful has been the focal point of a large number 
of these papers, this guess is as yet unproved. 
Tragically there are hardly any broad outcomes in 
graph labeling. In reality in any event, for problems 
as barely engaged as the ones including the unique 
classes of graphs, the labelings have been hard-won 
and include a huge number of cases.  

Finding a graph that has a α-labeling is another 
regular methodology in numerous papers. The 
accompanying condition (because of Rosa) is known 
to be important and on account of cycles likewise 
adequate for a 2-ordinary graph G = (V,E) to have a 
α-labeling: ⏐E(G)⏐≡ 0 (mod 4). In 1982, Kotzig 
guessed that this condition is likewise adequate for a 
2-normal graph with parts.  

Labeled graphs fill in as valuable apparatuses for an 
expansive scope of applications. Sprout and Golomb 
in two brilliant reviews have introduced deliberately a 
use of graph labeling in many research fields, for 
example, coding theory problems, X-beam 
crystallographic investigation, correspondence 
network structure, ideal circuit design, basic voltage 
generator, and added substance number theory. 
Right now limit our conversation to applications of 
graceful labeling and its varieties in decomposition of 
graphs, ideal arrangement of distinction sets, and 
number groupings, for example, the Skolem 
succession:  

A graph G is a constrained nonempty set of things 
gathered vertices with a ton of unordered pairs of 
unmistakable vertices of G which is called edges 
showed by V (G) and E (G), independently. In case e 
= {u, v} is an edge, we form e = uv; we express that e 
joins the vertices u and v; u and v are neighboring 
vertices; u and v are event with e. In case two 
vertices are not joined, by then we express that they 
are non-connecting. If two unmistakable edges are 
scene with a normal vertex, by then they are said to 
be coterminous each other.  

 

 

GRAPH DECOMPOSITION  

Definition 1: A decomposition of a graph G is a 
family H = (H1, H2, … , Hn) of sub graphs of G such 
that each edge of G is contained in exactly one 
member of H. In fact G is the edge disjoint union of 
its sub graphs Hi 

 

 

Figure 5: Decomposition of a graph 

For example the graph G shown in Figure 5 has a 
decomposition H = (H1, H2, H3) into three K3: E(H1) = 
{(u1, u2), (u2, u6), (u1, u6), E(H2) = {(u2, u3), (u3, u4), 
(u2, u4), E(H3) = {(u1, u4), (u1, u6)} and V(H1) = (u1, 
u2, u6 ), V(H2) = (u2, u3, u4 ), V(H3) = (u4, u5, u6 ). 

Definition 2: Let two graphs G and G′ be given. A 
G-decomposition of a graph G′ is a decomposition of 
G into sub graphs isomorphic to G. In other words, 
each member Hi in definition 2. must be isomorphic 

to G. We write ′ whenever a G-decomposition 
of G′ exists.  

The decomposition of graph G in Figure 5 is a K3-

decomposition, i.e.,  

Definition 3: A decomposition H of a graph G into 
subgraphs H1,H2, … , Hn is said to be cyclic if there 
exists an isomorphism ƒ of G which induces a cyclic 
permutation fv of the set V(G) and satisfies the 
following implication: if Hi ∈ H then f (Hi) ∈ H for i = 
1,2, … ,n. Here f (Hi) is the subgraph of G with 
vertex set {f (u); u ∈ V(Hi)} and edgeset { (f (u), f (v) 

); e = ( u, v )∈ E(Hi) }. 

PERFECT SYSTEM OF DIFFERENCE SETS 

Definition 4: Let c, m, p1, p2, … , pm be positive 
integers, and Si ={ X0i < X1i < … < Xpi,i }; i = 1,2, … 
,m be a sequence of integers and Di = { Xji - Xki , 0 ≤ 
k < j ≤ pi }, i = 1,2, … ,m be their difference sets. 
Then we say that the system {D1, D2, … ,Dm } is a 
perfect system of difference sets (PSDS) starting 
with c if 
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Each set Di is called a component of PSDS {D1, D2, 
… , Dm }. The size of Di is pi. A PSDS is called 
regular if all its components are of the same size i.e. 
p1 = p2 = … = pm = n-1. Traditionally a regular PSDS 
with m components of size n-1 starting at c is 
referred to as (m, n, c). 

then the elements of Di can be represented in the 
form of a difference triangle: 

 

Biraud and Blum and Ribes [5] were most likely the 
initial ones to watch a connection between graceful 
labeling of graphs and PSDS. The ordinary PSDS 
(1,n,1) is a PSDS with one segment beginning with 1. 
There exists just two normal PSDS (1,n,1) [5]. They 
are 

 

The mirror images of the above PSDS are also 
PSDS. 

LABELING, COVERING AND DECOMPOSING 
OF GRAPHS 

Definition 5 A standards in a numerical framework 
(Σ; R) is said to be Smarandachely denied on the off 
chance that it carries on in at any rate two unique 
ways inside a similar set Σ, i.e., approved and 
invalided, or just invalided however in different 
unmistakable manners. A Smarandache framework 
(Σ; R) is a scientific framework which has at any rate 
one Smarandachely denied rule in R. 

Definition 6 For an integer m ≥ 2, let (Σ1; R1), (Σ2; 
R2), ···, (Σm; Rm) be m mathematical systems 
different two by two. A Smarandache multi-space is a 
pair (Σ; e Re) with 

 

Definition 7 A maxims is said to be Smarandachely 
denied if the saying carries on in at any rate two 
unique ways inside a similar space, i.e., approved 
and invalided, or just invalided yet in numerous 
particular manners. 

Example 1 Let us consider an Euclidean plane R2 
and three non-collinear points A, B and C. 
Characterize s-points as all standard Euclidean 
points on R2 and s-lines any Euclidean line that goes 
through one and only one of points A, B and C, for 
example, those appeared in Fig.6.  

(i) The adage (A5) that through a point outside 
to a given line there is just one equal going through it 
is presently supplanted by two articulations: one 
equal, and no equal. Leave L alone a s-line goes 
through C and is equal in the Euclidean sense to AB. 
Notice that through any s-point not lying on AB there 
is one s-line corresponding to L and through some 
other s-point lying on AB there is no s-lines 
corresponding to L, for example, those appeared in 
Fig.6(a).  

(ii) The maxim that through any two particular 
points there exist one line going through them is 
presently supplanted by; one s-line, and no s-line. 
Notice that through any two unmistakable spoints D, 
E collinear with one of A, B and C, there is one s-
line going through them and through any two 
particular s-points F, G lying on AB or non-collinear 
with one of A, B and C, there is no s-line going 
through them, for example, those appeared in 
Fig.6(b). 

 

Fig.6 

Definition 8 A combinatorial system CG is a union 
of mathematical systems (Σ1; R1),(Σ2; R2), · · · , 
(Σm; Rm) for an integer m, i.e., 

 

with an underlying connected graph structure G, 
where 
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Vertex-Edge Labeled Graphs with Applications 

1. Application to Principal Fiber Bundles 

Definition 9 A labeling on a graph G = (V, E) is a 

mapping θL : V ∪ E → L for a name set L, meant by 
GL.  

In the event that θL: E → ∅ or θL: V → ∅, at that 
point GL is known as a vertex labeled graph or an 
edge labeled graph, meant by GV or GE, separately. 
Else, it is known as a vertex-edge labeled graph. 

Example: 

 

Fig.7 

Specified Parts Decomposition Problem  

Given a graph C with edge set E(C) and an 
assortment of edge-disjoint straight woods F1, F2,..., 
Fk containing a sum of JEJ edges, does there exist a 
typical weight decomposition of C whose parts are 
individually isomorphic to F1 , F2,..., Fk?  

We get normal weight decompositions into 
determined parts for cycles, cartesian item G1 x C2 of 
two graphs C1 and C2 , rn-crystals Cm x P, 
rectangular matrices Pm X P and for n-shapes Q. We 
likewise talk about the comparing issue for added 
substance labelings. 

Theorem 1. A labeling exists for every cycle with ns 

edges  which decomposes it into n copies of 
sP2. 

 

 

 

Case (ii) s is even. 

Define a labeling f as follows. 

 

 

In both cases the labeling f defined above realizes a 

decomposition of  into n copies of  

A common-weight decomposition of an even cycle 
into two immaculate matching's. In the 
accompanying theorem we get a comparative 
outcome for odd cycles. 

CONCLUSION 

A vertex v of a graph G is known as a cut-vertex of 
G if the evacuation of v expands the quantity of 
parts. An edge e of a graph G is known as a cut 
edge or extension if the evacuation of e expands the 
quantity of parts. A lot of edges S is called an edge 
cut of G if the quantity of segments of G - S is more 
prominent than that of G. A square of a graph is a 
maximal associated, non-unimportant sub graph 
without cut-vertices. A graph is non-cyclic in the 
event that it has no cycles. A tree is an associated 
non-cyclic graph. A tree with precisely one vertex of 
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degree > 3 is known as a creepy crawly tree and an 
established tree comprising of k - branches where ith 
branch is a path of length I, is called an olive tree. 
Let G be a graph with vertex set{ v, v2, ..., v}. At that 
point the graph obtained by presenting n new 
vertices u1, u2, ..., u and edges u1 vi is indicated by 
G. The separation between two vertices u and v in an 
associated graph G is the length of the most limited u 
- v path in G and is signified by d(u, v). The level of a 
vertex v in a graph G, indicated by d(v), is the 
quantity of edges episode with v. The base degree 
among the vertices of G is indicated by 6(G), while 
the greatest degree among the vertices of G is 
signified by A(G). In the event that 6(G) = A(G) = r, at 
that point all vertices have a similar degree and G is 
known as a customary graph of degree r. In the 
event that d(v) = 0, v is called a disconnected vertex.  
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