

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

119

 Journal of Advances in Science and Technology
Vol. 15, Issue No. 2, September-2018, ISSN 2230-9659

Advanced Encryption Standard instruction Set
Extensions for EC Cryptography

Dr. Sridevi*

Department of Computer Science, Karnatak University, Dharwad, Karnataka

Abstract – This paper demonstrate that the case by showing the use of word-level binary polynomial
multiplication for acceleration of the Advanced Encryption Standard (AES) algorithm. Considerable
fraction of the computation effort of a software implementation of AES is spent in the MixColumns and
InvMixColumns transformations. Consequently, these transformations are a worthwhile target for
optimization as demonstrated by the approaches of T-table lookup or alternative representation of the
AES State. Performance of MixColumns implementations lies in the fact that the required multiplications
in the binary extension field GF(28) are not supported by modern processors and need to be emulated by
shift and XOR instructions. Instruction set extensions for Elliptic Curve Cryptography (ECC) include
support for arithmetic in large binary extension fields. This analyzes how well these custom instructions
are suited for accelerating a software implementation of AES on 32-bit platforms. Taking fast AES
implementations for 32-bit processors as reference.

Keywords: AES, MixColumns, ECC, XOR, etc.

- X -

1. IMPLEMENTING AES ON 32-BIT
PROCESSORS

On 32-bit platforms, most of the AES operations can
be implemented with table lookups using the T-table
approach. A set of T-tables can be used to
implement a specific part of the AES algorithm. For
each such part, there is a choice between the use of
a single table of 256 entries of 32-bit words or a set
of four such tables, i.e., a size of 1KB or 4 KB,
respectively. The three additional tables in the set of
four tables are just rotated versions of the original
table. Therefore, a single T-table is sufficient if the
necessary rotations are executed at runtime.

The part of AES most worthwhile to be implemented
with T-tables is the combination of SubBytes,
ShiftRows and MixColumns, which is used in normal
encryption rounds. The SubBytes and ShiftRows
transformations in the final round can also be
implemented with another set of T-tables, but the
potential speedup is rather small. Similarly,
InvSubBytes, InvShiftRows and InvMixColumns can
be realized with T-tables. However, in such a case it
is necessary to employ the equivalent inverse cipher
structure[1]. InvSubBytes and InvShiftRows in the
final decryption round can also be done with T-
tables. The use of the equivalent inverse cipher
structure necessitates a more complex key
expansion, as most of the round keys (except the
first and last) must be transformed with
InvMixColumns. When a precomputed key schedule
is employed, the additional transformations normally

pose no problem, as the costly key expansion is
only done once per cipher key. However, if on-the-
fly key expansion is to be used, AES decryption with
T-tables for the rounds can become rather
inefficient. The InvMixColumns operation in the key
expansion can also be implemented with another set
of T-tables.

The minimal size of lookup tables for a software
AES implementation (without resorting to bit-slicing
techniques) is 256 bytes for SubBytes and InvSub-
Bytes, respectively. In principle, the byte
substitutions could be calculated on-the-fly through
their defining arithmetic operations: Inversion in
GF(2

8
) and affine transformation. However, this

would be very slow on conventional processors,
which are not fit for arithmetic in binary extension
fields. Therefore, lookup of the S-box remains the
only practical solution.

The rest of the AES round transformations can be
calculated with reasonable computational effort.
SubBytes and InvSubBytes can be combined with
ShiftRows and InvShiftRows, respectively, if the
bytes are arranged accordingly after substitution.
Such a combined operation is possible as SubBytes
and Shift-Rows are consecutive operations and their
order of execution can be switched arbitrarily. The
combination delivers the shifting of the rows at no
additional cost. AddRoundKey can be realized with
a few XOR instructions, which are found on virtually
all microprocessors.

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

120

 Advanced Encryption Standard instruction Set Extensions for EC Cryptography

The bit-slicing technique can be applied in order to
get AES implementations which do not require any
lookup tables. Each AES State is distributed amongst
a number of registers where each register contains
parts of a number of different States. The
transformations themselves are expressed as logical
operations.

Multiple AES operations can be performed
simultaneously and the average cost per block is
comparable to a conventional implementation
provided that the word size of the processor is
sufficiently large. The absence of data-dependent
table lookups makes bit-slicing implementations
resistant against cache-based timing attacks.
However, the latency for a single AES operation is
very large. This is especially a problem in situations
where it is not possible to parallelize the AES
operations, e.g., in CBC mode encryption. As bit-
slicing leads to a less general solution for realizing
AES, we will concentrate on conventional
implementations.

Hence, depending on the implementation strategy,
AES encryption requires between 256 bytes (just one
S-box table) and 8KB (two sets of T-tables of 4KB
each) of lookup tables. For AES decryption, the
range goes from 256 bytes up to a maximum of 12
KB. Depending on the acceptable code size, the T-
tables can be statically included in the code section
of the program or generated at runtime.

In the first case, the tables reside in the program
memory of the processor while in the second case,
they are placed in the working memory. The
performance of AES implementations with T-tables is
highly dependent on the properties of the memory
subsystem of the processor. Especially on systems
with slow memory and no or minimal cache, it can be
faster to calculate the AES round transformations
directly. Another important design aspect is the
storage of the State on 32-bit architectures. At the
beginning of encryption or decryption, the State is
filled with the plaintext or ciphertext. Herein, the first
four bytes of the input make up the first column of the
State, the next four bytes the second column, etc. On
32-bit processors, four bytes are usually packed into
a 32-bit word in order to increase utilization of
registers and the datapath. A common choice is to
hold the four columns of the State in four 32-bit
registers. We will denote an AES implementation
with such a storage strategy as column-oriented. The
well-known AES implementation of Brian Gladman
[3] is an example of a column-oriented
implementation.

The MixColumns and InvMixColumns operations
interpret the State bytes and State columns as
elements of binary extension fields and require
operations which are normally not supported by
common microprocessors. When these
transformations are calculated by the processor, the
finite field operations must be realized with

instructions for logical operations, shifting and integer
arithmetic.

Consequently, a considerable part of AES is spent
on calculating the MixColumns and InvMixColumns
operations. Bertoni et al. have presented an alternate
way for calculating MixColumns and its inverse on
32-bit platforms. Their strategy requires that the rows
of the State are held in 32-bit words instead of the
columns2. The key advantage of this method is the
possibility to multiply all four bytes of each word
simultaneously with the same constant from GF(2

8
)

without the need to shift the results into place.
Although this strategy requires a transposition of the
State matrix at the beginning and end of AES, a
transposition of the cipher key and a more complex
key expansion, the whole AES operation is
commonly faster than a column-oriented
implementation. The performance gains are
especially significant for decryption, because
InvMixColumns is much easier to calculate with the
rows of the State than with the columns. The
algorithms for calculating MixColumns and
InvMixColumns using the State columns and State
rows, as well as possible optimizations using ECC
instruction set extensions.

2. OPTIMIZING AES USING
INSTRUCTION SET EXTENSIONS

MixColumns and InvMixColumns require addition
and multiplication of elements of the binary
extension field GF(2

8
) and of polynomials over

GF(2
8
). Addition in GF(2

8
) is defined as a bitwise

XOR. Multiplication in GF(2
8
) can be seen as

multiplication of binary polynomials (i.e., coefficients
mod 2), followed by a reduction with an irreducible
polynomial. Arithmetic with polynomials over GF(2

8
)

follows the conventional rules for polynomials, using
addition and multiplication in GF(2

8
) for the

coefficients.

In the context of Elliptic Curve Cryptography,
various instruction set extensions for arithmetic in
binary extension fields GF(2m) have been
proposed. The word-level multiplication of binary
polynomials has been identified as one of the key
operations by Ko¸c et al. in, where this operation
was denoted as MULGF2. In, a small set of
instructions (including one for MULGF2) for the
MIPS32 architecture has been presented and their
impact on ECC implementations over GF(p) and
GF(2m) has been evaluated. We have used three of
these instructions to speed up AES
implementations. Table1 lists the instruction names
used for MIPS32 in and the mnemonics we have
used for our SPARC implementation along with a
short functional description. We will employ the
SPARC names in the following. All three instructions
work on a dedicated accumulator whose size must
be at least twice the word size, i.e., in our case at
least 64 bits.

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

121

 Journal of Advances in Science and Technology
Vol. 15, Issue No. 2, September-2018, ISSN 2230-9659

Table 1: The ECC instruction set extensions used

to speed up AES.

The instructions gf2mul and gf2mac interpret the two
operands as binary polynomials, multiply them, and
put the result in the accumulator. They differ in that
gf2mul overwrites the previous accumulator value
while gf2mac adds the polynomial product to it. The
shacr instruction writes the lowest word of the
accumulator to a given destination register and shifts
the accumulator value to the right by a distance of 32
bits. All timing estimations for code snippets
presented in this chapter are based on the following
properties of the SPARC V8 architecture:

• No rotate instruction is available in the
architecture. Rotation is done with two shifts
and an OR/XOR instruction.

• In order to set a constant value with more
than 13 bits in a register, two instructions are
required.

• There are enough free registers to hold up to
three constant words throughout the
calculation of MixColumns or
InvMixColumns.

3. COLUMN-ORIENTED
IMPLEMENTATION

For MixColumns and InvMixColumns, each new
column can be calculated separately from the old
column. This property is used if the four columns of
the State are held in separate 32-bit words. The
following code calculates MixColumns for a single
State column in a conventional fashion. At the
beginning, the input column is held in the variable
column and at the end, the transformed column is
written into this variable.

Code 1: MixColumns for a single state column
(conventional).

The operator ^ denotes bitwise XOR. The function
GFDOUBLE interprets the four bytes of column as
four elements of GF(2

8
) and doubles them

individually. The function ROTL rotates the word to
the left by the given number of bits. The basic idea
behind the code is that each byte of the resulting
column consists of a weighted sum of the four bytes
of the old column. Multiplication of all four bytes with
the GF(2

8
) constants 02 and 03 is done in line 2 and

3 and the result is stored in double and triple,

respectively. In line 4, the bytes are rotated into the
correct positions and summed up.

The function GFDOUBLE requires about 10
instructions. The function ROTL takes between one
and three instructions. The actual number depends
on whether the processor features a dedicated rotate
instruction. As this is not the case for the SPARC V8
architecture, we will consider the cost of ROTL to be
three instructions in the following. Logical operations
like the XORs in line 4 are considered to map to a
single instruction. The calculation of a single column
requires one GFDOUBLE, three ROTL and four XOR
operations, which results in a total instruction count
of 23 for the code in code :1

When the ECC instruction set extensions listed in
Table1 are available, it is possible to calculate a
column much faster. In order to do this, we use the
definition of MixColumns in terms of a polynomial
multiplication. More precisely, MixColumns can be
described as a multiplication of two polynomials of
degree 3 with coefficients in GF(2

8
). The input

column is interpreted as the first polynomial,
whereas the second polynomial is fixed to the value
of 03 · t3 + 01 · t2 + 01 · t + 02. The following code
calculates MixColumns for a single column.

Code 2: MixColumns for a single state column
(using extensions).

If the instruction set extensions are available, the
three functions GF2MUL, GF2MAC, and SHACR
directly map down to the corresponding processor
instructions. The rest of the code consists of simple
logical operations. The main idea behind this code is
illustrated in Figure3. There are three phases in the
whole calculation:

• Polynomial multiplication

• Reduction of polynomial coefficients

• Polynomial reduction

Line 4 performs the multiplication of the input
column with the constant polynomial 01· t3 + 01 · t2
+ 03 · t1 + 02. Note that as the bytes of the column
represent the polynomial coefficients with ascending
degree (i.e., the byte at the word‘s most significant
position is the coefficient of t0), the coefficients of
the constant polynomial have been rearranged
accordingly to yield a product with ascending
coefficient degree. The polynomial multiplication
puts the first block of coefficients in Figure3 in the
accumulator. Note that the coefficients are displayed

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

122

 Advanced Encryption Standard instruction Set Extensions for EC Cryptography

separately, but that they are in fact all contained as
additive contributions in the multiplication result.

The coefficients si, which have been multiplied with
the value 03 or 02, may no longer be in the reduced
form of binary polynomials of degree smaller or equal
to 7, but can be of larger degree. More specifically, 3
si or 2 si are no longer in reduced form if (and only if)
the most significant bit (MSB) of si is 1. Such values
are called residue values and they can be reduced to
a degree smaller or equal to 7 by adding the
reduction polynomial of the finite field, which is x

8
 +

x
4
 + x

3
 + x + 1 (0x11b) in the case of AES.

In order to achieve the reduction of the GF(2
8
)

coefficients, we add a reduction value ri for each
coefficient 3si and 2si. In the case that the MSB of si
is 1, the according ri is set to 0x11b, otherwise ri is
set to 0. The reduction values are shown in the
middle of Figure3 with corresponding coefficients and
reduction values marked in the same color. After the
addition of the reduction values to the result of the
polynomial multiplication, all coefficients are fully
reduced. The reduction values ri can be calculated
by extraction of the corresponding MSBs of the
coefficients si (lines 2 and 3) and the multiplication of
these values with the constant 0x00011a1b (line 5).
This constant is the sum of 0x11b aligned to the two
lower bytes of the word, and the multiplication
generates the reduction values ri in the required
positions. In line 5, the reduction values are also
added to the previous multiplication result in the
accumulator by the GF2MAC operation.

In line 6 and 7, the polynomial is read into two
variables and in line 8 the reduction of the polynomial
is performed. Due to the special nature of the
reduction polynomial p(t) = t

4
 + 1, the coefficients for

degrees 4 to 6 must be added to the coefficients of
degree 0 to 2, respectively (the coefficient for degree
3 stays unchanged). This is easily done by an XOR
of the low and the high word of the accumulator.

The calculation of a single column for MixColumns
shown in code1 therefore requires thirteen
instructions. This includes the generation of the three
constant values which are used in the process
(0x80808080, 0x01010302, and 0x00011a1b). But
as these values only need to be generated once per
MixColumns, there is an average number of 8.5
instructions required to calculate a single column3.

The optimizations for InvMixColumns work in a
similar fashion, with the exception that the reduction
values ri are generated with an additional GF2MUL
operation by performing the polynomial multiplication
with the highest three bits of each coefficient alone.
The according code is shown in code 4. It takes
approximately 16 instructions to calculate one
column, which is much faster than the conventional
approach.

Lines 2 to 10 generate the reduction bits and put
them at the correct position in a single word. In line
12, these reduction bits are used to perform the
coefficient reduction on the result of line 11. The rest
of the code is similar to the one for MixColumns.

Figure 3: Polynomial multiplication and
reduction to yield a column after MixColumns.

4. ROW-ORIENTED IMPLEMENTATION

In a row-oriented AES implementation the
MixColumns and InvMixColumns operations are
calculated together for the complete State. The
strength of this method lies in the possibility to reuse
intermediate results for all four columns of the State.
This advantage is especially significant in the
relatively complex InvMixColumns operation. The
conventional row-oriented MixColumns uses four
GFDOUBLE operations, while InvMixColumns
requires seven. Code 5 depicts the code for a
conventional implementation of the GFDOUBLE
operation. Here, the reduction information is
extracted from poly in lines 2 to 4. The actual
doubling of the four bytes takes place in line 5.
Afterwards, the reduction is performed (line 6). This
version of GFDOUBLE requires 10 instructions, but
the reuse of the bitmasks in consecutive
GFDOUBLE operations leads to a lower instruction
count. There are four consecutive doublings in both
MixColumns and InvMixColumns, which can be
done in an average of 7 instructions each when the
bitmasks are reused.

Code 4: InvMixColumns for a single state
column (using extensions).

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

123

 Journal of Advances in Science and Technology
Vol. 15, Issue No. 2, September-2018, ISSN 2230-9659

Code 5: GFDOUBLE for row-wise
MixColumns/InvMixColumns (conventional).

With the help of the gf2mul, gf2mac and shacr
instructions, the GFDOUBLE operation can be done
slightly faster than with conventional instructions.
Such an optimized version of GFDOUBLE is shown
in code 6.The reduction information is extracted in a
similar manner, but doubling and reduction are done
with GF2MUL and GF2MAC, respectively. The
optimized version takes about 7 instructions. When
reusing the bitmask in four consecutive doublings,
the average instruction count goes down to
approximately 5.

Code .6: GFDOUBLE for row-wise
MixColumns/InvMixColumns (using extensions).

5. RESULTS

In order to implement and evaluate our new AES
implementation approaches, we used a version of
the LEON2-CIS which includes the required ECC
extensions. The processor configuration includes a
(32×32)-bit unified integer/polynomial multiply-
accumulate unit with a 72-bit accumulator (including
8 guard bits for integer multiply-accumulate). At the
heart of this multiply-accumulate unit is a (32×16)-bit
unified integer/polynomial multiplier. The processor
has been implemented on the GR-PCI-XC2V FPGA
board.

On this version of the LEON2-CIS, a gf2mul
instruction executes in three cycles, while a gf2mac
instruction takes only a single cycle6. The shacr
instruction always finishes in one cycle. In order to
estimate the hardware cost of the extensions, we
have compared the synthesis results of a
―conventional‖ LEON2 featuring a conventional
(32×16)-bit integer multiplier to our LEON2-CIS
variant. The latter requires about 5,5 kGates more
than the reference version, whereby the added
functionality encompasses not only all the extensions
from], but also a signed multiply accumulate
instruction. Unfortunately, the LEON2 does not offer
a configuration with a (32×16)-bit multiply-
accumulate unit, so the sole cost of the instructions
for binary polynomials cannot be determined easily.

We have made tests with Gladman‘s AES code [3]
using it both as reference as well as an instance of a
column-oriented implementation. However,
Gladman‘s code only allows to optimize the
calculation of a single column and not of the whole
MixColumns transformation. Therefore, we have

implemented our own version of a column-oriented
AES which is more easily optimized. Furthermore,
we have implemented our own version of a row-
oriented AES following the ideas from. Our column-
oriented and row-oriented versions are written in C
and support both encryption and decryption both for
a pre computed key schedule as well as for on-the-fly
key expansion. Moreover, all versions feature a
conventional implementation with native SPARC V8
instructions and an optimized implementation where
MixColumns and InvMixColumns make use of the
ECC instruction set extensions.

Timing measurements have been done using the
integrated cycle counter of the LEON2-CIS. The
code which performs the measurements has been
derived from Gladman‘s code. In order to get a fair
comparison of the different implementation options,
we have used a processor configuration with a very
large instruction and data cache (4 sets with 16KB
each, organized in lines of 8 words). The results
therefore reflect performance in an environment with
fast memory access or with ―perfect‖ cache.

5.1 Precomputed Key Schedule

Table2: Execution times of AES-128 encryption,
decryption and key expansion.

Table2 lists the timing results for AES-128
encryption and decryption when using a
precomputed key schedule. The time for doing the
key expansion is also stated. The speedup is
calculated between the best conventional
implementation and the best optimized
implementation (best performance marked in bold).
The row-oriented AES is best for both conventional
encryption and decryption. For the optimized
variants, the column-oriented implementation is best
for encryption, while the performance for decryption
is nearly identical for the column-oriented and row-
oriented version.

5.2 On-the-fly Key Expansion

The timing results in Table3 refer to AES-128
encryption and decryption with on-the-fly key
expansion. As Gladman‘s code does not support
this mode, only the results for our column-oriented
and row-oriented version are stated. Note that the
last round key is supplied to the decryption routine,
so that it does not have to perform the whole key
expansion at the beginning of decryption. For
conventional encryption, the column-oriented AES is

Dr. Sridevi*

w
w

w
.i
g

n
it

e
d

.i
n

124

 Advanced Encryption Standard instruction Set Extensions for EC Cryptography

slightly better, while for decryption, the row-oriented
version is fastest. For the versions which use the
ECC extensions, the column-oriented AES is better
for both encryption and decryption. The speedup is
again calculated considering the best conventional
and optimized version.

Table 3: Execution times of AES-128 encryption
and decryption with on-the-fly key expansion.

5.3 Code Size and Side-Channel Attacks

The code size for the implementations ranges
between 2.5KB and 3.5 KB, where the optimized
variants are always smaller than the non-optimized
ones. Note however, that the implementations have
been optimized for speed and not for code size.
Savings through optimization go up to 15% (for
column-wise decryption with precomputed key
schedule).

The susceptibility to side-channel attacks is not
changed through the use of the instruction set
extensions. It is therefore necessary to integrate
countermeasures into a system which calculates
AES using the presented methods, if resistance
against side-channel attacks is required.

6. CONCLUSION

This paper demonstrated the use of instruction set
extensions originally designed for elliptic curve
cryptography for the acceleration of software
implementations of AES. Although not specifically
designed for that purpose, the use of the three
instructions gf2mul, gf2mac and shacr allows
performance gains of up to 25%. This speedup can
be considered as ―free‖ on processors which already
feature these instructions. Generally, the column-
oriented AES implementations can be optimized very
well with the instruction set extensions.

REFERENCES

[1] J. Daemen and V. Rijmen. The Design of
Rijndael. Information Security and
Cryptography. Springer, 2002. ISBN 3-540-
42580-2.

[2] A. J. Elbirt. Fast and Efficient Implementation
of AES via Instruction Set Extensions. In
Proceedings of the 21st International
Conference on Advanced Information
Networking and Applications Workshops
(AINAW 2007), volume 1, pages 396–403.
IEEE Computer Society, May 2007.

[3] B. Gladman. Implementations of AES
(Rijndael) in C/C++ and Assembler.
Available online at
http://fp.gladman.plus.com/cryptography_
technology/rijndael/index.htm.

Corresponding Author

Dr. Sridevi*

Department of Computer Science, Karnatak
University, Dharwad, Karnataka

