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Abstract – This paper demonstrate that the case by showing the use of word-level binary polynomial 
multiplication for acceleration of the Advanced Encryption Standard (AES) algorithm. Considerable 
fraction of the computation effort of a software implementation of AES is spent in the MixColumns and 
InvMixColumns transformations. Consequently, these transformations are a worthwhile target for 
optimization as demonstrated by the approaches of T-table lookup or alternative representation of the 
AES State. Performance of MixColumns implementations lies in the fact that the required multiplications 
in the binary extension field GF(28) are not supported by modern processors and need to be emulated by 
shift and XOR instructions. Instruction set extensions for Elliptic Curve Cryptography (ECC) include 
support for arithmetic in large binary extension fields. This analyzes how well these custom instructions 
are suited for accelerating a software implementation of AES on 32-bit platforms. Taking fast AES 
implementations for 32-bit processors as reference. 

Keywords: AES, MixColumns, ECC, XOR, etc. 
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1. IMPLEMENTING AES ON 32-BIT 
PROCESSORS 

On 32-bit platforms, most of the AES operations can 
be implemented with table lookups using the T-table 
approach. A set of T-tables can be used to 
implement a specific part of the AES algorithm. For 
each such part, there is a choice between the use of 
a single table of 256 entries of 32-bit words or a set 
of four such tables, i.e., a size of 1KB or 4 KB, 
respectively. The three additional tables in the set of 
four tables are just rotated versions of the original 
table. Therefore, a single T-table is sufficient if the 
necessary rotations are executed at runtime. 

The part of AES most worthwhile to be implemented 
with T-tables is the combination of SubBytes, 
ShiftRows and MixColumns, which is used in normal 
encryption rounds. The SubBytes and ShiftRows 
transformations in the final round can also be 
implemented with another set of T-tables, but the 
potential speedup is rather small. Similarly, 
InvSubBytes, InvShiftRows and InvMixColumns can 
be realized with T-tables. However, in such a case it 
is necessary to employ the equivalent inverse cipher 
structure[1]. InvSubBytes and InvShiftRows in the 
final decryption round can also be done with T-
tables. The use of the equivalent inverse cipher 
structure necessitates a more complex key 
expansion, as most of the round keys (except the 
first and last) must be transformed with 
InvMixColumns. When a precomputed key schedule 
is employed, the additional transformations normally 

pose no problem, as the costly key expansion is 
only done once per cipher key. However, if on-the-
fly key expansion is to be used, AES decryption with 
T-tables for the rounds can become rather 
inefficient. The InvMixColumns operation in the key 
expansion can also be implemented with another set 
of T-tables. 

The minimal size of lookup tables for a software 
AES implementation (without resorting to bit-slicing 
techniques) is 256 bytes for SubBytes and InvSub- 
Bytes, respectively. In principle, the byte 
substitutions could be calculated on-the-fly through 
their defining arithmetic operations: Inversion in 
GF(2

8
) and affine transformation. However, this 

would be very slow on conventional processors, 
which are not fit for arithmetic in binary extension 
fields. Therefore, lookup of the S-box remains the 
only practical solution. 

The rest of the AES round transformations can be 
calculated with reasonable computational effort. 
SubBytes and InvSubBytes can be combined with 
ShiftRows and InvShiftRows, respectively, if the 
bytes are arranged accordingly after substitution. 
Such a combined operation is possible as SubBytes 
and Shift-Rows are consecutive operations and their 
order of execution can be switched arbitrarily. The 
combination delivers the shifting of the rows at no 
additional cost. AddRoundKey can be realized with 
a few XOR instructions, which are found on virtually 
all microprocessors. 
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The bit-slicing technique can be applied in order to 
get AES implementations which do not require any 
lookup tables. Each AES State is distributed amongst 
a number of registers where each register contains 
parts of a number of different States. The 
transformations themselves are expressed as logical 
operations. 

Multiple AES operations can be performed 
simultaneously and the average cost per block is 
comparable to a conventional implementation 
provided that the word size of the processor is 
sufficiently large. The absence of data-dependent 
table lookups makes bit-slicing implementations 
resistant against cache-based timing attacks. 
However, the latency for a single AES operation is 
very large. This is especially a problem in situations 
where it is not possible to parallelize the AES 
operations, e.g., in CBC mode encryption. As bit-
slicing leads to a less general solution for realizing 
AES, we will concentrate on conventional 
implementations. 

Hence, depending on the implementation strategy, 
AES encryption requires between 256 bytes (just one 
S-box table) and 8KB (two sets of T-tables of 4KB 
each) of lookup tables. For AES decryption, the 
range goes from 256 bytes up to a maximum of 12 
KB. Depending on the acceptable code size, the T-
tables can be statically included in the code section 
of the program or generated at runtime. 

In the first case, the tables reside in the program 
memory of the processor while in the second case, 
they are placed in the working memory. The 
performance of AES implementations with T-tables is 
highly dependent on the properties of the memory 
subsystem of the processor. Especially on systems 
with slow memory and no or minimal cache, it can be 
faster to calculate the AES round transformations 
directly. Another important design aspect is the 
storage of the State on 32-bit architectures. At the 
beginning of encryption or decryption, the State is 
filled with the plaintext or ciphertext. Herein, the first 
four bytes of the input make up the first column of the 
State, the next four bytes the second column, etc. On 
32-bit processors, four bytes are usually packed into 
a 32-bit word in order to increase utilization of 
registers and the datapath. A common choice is to 
hold the four columns of the State in four 32-bit 
registers. We will denote an AES implementation 
with such a storage strategy as column-oriented. The 
well-known AES implementation of Brian Gladman 
[3] is an example of a column-oriented 
implementation. 

The MixColumns and InvMixColumns operations 
interpret the State bytes and State columns as 
elements of binary extension fields and require 
operations which are normally not supported by 
common microprocessors. When these 
transformations are calculated by the processor, the 
finite field operations must be realized with 

instructions for logical operations, shifting and integer 
arithmetic. 

Consequently, a considerable part of AES is spent 
on calculating the MixColumns and InvMixColumns 
operations. Bertoni et al. have presented an alternate 
way for calculating MixColumns and its inverse on 
32-bit platforms. Their strategy requires that the rows 
of the State are held in 32-bit words instead of the 
columns2. The key advantage of this method is the 
possibility to multiply all four bytes of each word 
simultaneously with the same constant from GF(2

8
) 

without the need to shift the results into place. 
Although this strategy requires a transposition of the 
State matrix at the beginning and end of AES, a 
transposition of the cipher key and a more complex 
key expansion, the whole AES operation is 
commonly faster than a column-oriented 
implementation. The performance gains are 
especially significant for decryption, because 
InvMixColumns is much easier to calculate with the 
rows of the State than with the columns. The 
algorithms for calculating MixColumns and 
InvMixColumns using the State columns and State 
rows, as well as possible optimizations using ECC 
instruction set extensions. 

2. OPTIMIZING AES USING 
INSTRUCTION SET EXTENSIONS 

MixColumns and InvMixColumns require addition 
and multiplication of elements of the binary 
extension field GF(2

8
) and of polynomials over 

GF(2
8
). Addition in GF(2

8
) is defined as a bitwise 

XOR. Multiplication in GF(2
8
) can be seen as 

multiplication of binary polynomials (i.e., coefficients 
mod 2), followed by a reduction with an irreducible 
polynomial. Arithmetic with polynomials over GF(2

8
) 

follows the conventional rules for polynomials, using 
addition and multiplication in GF(2

8
) for the 

coefficients. 

In the context of Elliptic Curve Cryptography, 
various instruction set extensions for arithmetic in 
binary extension fields GF(2m) have been 
proposed. The word-level multiplication of binary 
polynomials has been identified as one of the key 
operations by Ko¸c et al. in, where this operation 
was denoted as MULGF2. In, a small set of 
instructions (including one for MULGF2) for the 
MIPS32 architecture has been presented and their 
impact on ECC implementations over GF(p) and 
GF(2m) has been evaluated. We have used three of 
these instructions to speed up AES 
implementations. Table1 lists the instruction names 
used for MIPS32 in and the mnemonics we have 
used for our SPARC implementation along with a 
short functional description. We will employ the 
SPARC names in the following. All three instructions 
work on a dedicated accumulator whose size must 
be at least twice the word size, i.e., in our case at 
least 64 bits. 
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Table 1: The ECC instruction set extensions used 

to speed up AES. 

 

The instructions gf2mul and gf2mac interpret the two 
operands as binary polynomials, multiply them, and 
put the result in the accumulator. They differ in that 
gf2mul overwrites the previous accumulator value 
while gf2mac adds the polynomial product to it. The 
shacr instruction writes the lowest word of the 
accumulator to a given destination register and shifts 
the accumulator value to the right by a distance of 32 
bits. All timing estimations for code snippets 
presented in this chapter are based on the following 
properties of the SPARC V8 architecture: 

• No rotate instruction is available in the 
architecture. Rotation is done with two shifts 
and an OR/XOR instruction. 

• In order to set a constant value with more 
than 13 bits in a register, two instructions are 
required. 

• There are enough free registers to hold up to 
three constant words throughout the 
calculation of MixColumns or 
InvMixColumns. 

3. COLUMN-ORIENTED 
IMPLEMENTATION 

For MixColumns and InvMixColumns, each new 
column can be calculated separately from the old 
column. This property is used if the four columns of 
the State are held in separate 32-bit words. The 
following code calculates MixColumns for a single 
State column in a conventional fashion. At the 
beginning, the input column is held in the variable 
column and at the end, the transformed column is 
written into this variable. 

 

Code 1: MixColumns for a single state column 
(conventional). 

The operator ^ denotes bitwise XOR. The function 
GFDOUBLE interprets the four bytes of column as 
four elements of GF(2

8
) and doubles them 

individually. The function ROTL rotates the word to 
the left by the given number of bits. The basic idea 
behind the code is that each byte of the resulting 
column consists of a weighted sum of the four bytes 
of the old column. Multiplication of all four bytes with 
the GF(2

8
) constants 02 and 03 is done in line 2 and 

3 and the result is stored in double and triple, 

respectively. In line 4, the bytes are rotated into the 
correct positions and summed up. 

The function GFDOUBLE requires about 10 
instructions. The function ROTL takes between one 
and three instructions. The actual number depends 
on whether the processor features a dedicated rotate 
instruction. As this is not the case for the SPARC V8 
architecture, we will consider the cost of ROTL to be 
three instructions in the following. Logical operations 
like the XORs in line 4 are considered to map to a 
single instruction. The calculation of a single column 
requires one GFDOUBLE, three ROTL and four XOR 
operations, which results in a total instruction count 
of 23 for the code in code :1 

When the ECC instruction set extensions listed in 
Table1 are available, it is possible to calculate a 
column much faster. In order to do this, we use the 
definition of MixColumns in terms of a polynomial 
multiplication. More precisely, MixColumns can be 
described as a multiplication of two polynomials of 
degree 3 with coefficients in GF(2

8
). The input 

column is interpreted as the first polynomial, 
whereas the second polynomial is fixed to the value 
of 03 · t3 + 01 · t2 + 01 · t + 02. The following code 
calculates MixColumns for a single column. 

 

Code 2: MixColumns for a single state column 
(using extensions). 

If the instruction set extensions are available, the 
three functions GF2MUL, GF2MAC, and SHACR 
directly map down to the corresponding processor 
instructions. The rest of the code consists of simple 
logical operations. The main idea behind this code is 
illustrated in Figure3. There are three phases in the 
whole calculation: 

• Polynomial multiplication 

• Reduction of polynomial coefficients 

• Polynomial reduction 

Line 4 performs the multiplication of the input 
column with the constant polynomial 01· t3 + 01 · t2 
+ 03 · t1 + 02. Note that as the bytes of the column 
represent the polynomial coefficients with ascending 
degree (i.e., the byte at the word‘s most significant 
position is the coefficient of t0), the coefficients of 
the constant polynomial have been rearranged 
accordingly to yield a product with ascending 
coefficient degree. The polynomial multiplication 
puts the first block of coefficients in Figure3 in the 
accumulator. Note that the coefficients are displayed 
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separately, but that they are in fact all contained as 
additive contributions in the multiplication result. 

The coefficients si, which have been multiplied with 
the value 03 or 02, may no longer be in the reduced 
form of binary polynomials of degree smaller or equal 
to 7, but can be of larger degree. More specifically, 3 
si or 2 si are no longer in reduced form if (and only if) 
the most significant bit (MSB) of si is 1. Such values 
are called residue values and they can be reduced to 
a degree smaller or equal to 7 by adding the 
reduction polynomial of the finite field, which is x

8
 + 

x
4
 + x

3
 + x + 1 (0x11b) in the case of AES. 

In order to achieve the reduction of the GF(2
8
) 

coefficients, we add a reduction value ri for each 
coefficient 3si and 2si. In the case that the MSB of si 
is 1, the according ri is set to 0x11b, otherwise ri is 
set to 0. The reduction values are shown in the 
middle of Figure3 with corresponding coefficients and 
reduction values marked in the same color. After the 
addition of the reduction values to the result of the 
polynomial multiplication, all coefficients are fully 
reduced. The reduction values ri can be calculated 
by extraction of the corresponding MSBs of the 
coefficients si (lines 2 and 3) and the multiplication of 
these values with the constant 0x00011a1b (line 5). 
This constant is the sum of 0x11b aligned to the two 
lower bytes of the word, and the multiplication 
generates the reduction values ri in the required 
positions. In line 5, the reduction values are also 
added to the previous multiplication result in the 
accumulator by the GF2MAC operation. 

In line 6 and 7, the polynomial is read into two 
variables and in line 8 the reduction of the polynomial 
is performed. Due to the special nature of the 
reduction polynomial p(t) = t

4
 + 1, the coefficients for 

degrees 4 to 6 must be added to the coefficients of 
degree 0 to 2, respectively (the coefficient for degree 
3 stays unchanged). This is easily done by an XOR 
of the low and the high word of the accumulator. 

The calculation of a single column for MixColumns 
shown in code1 therefore requires thirteen 
instructions. This includes the generation of the three 
constant values which are used in the process 
(0x80808080, 0x01010302, and 0x00011a1b). But 
as these values only need to be generated once per 
MixColumns, there is an average number of 8.5 
instructions required to calculate a single column3. 

The optimizations for InvMixColumns work in a 
similar fashion, with the exception that the reduction 
values ri are generated with an additional GF2MUL 
operation by performing the polynomial multiplication 
with the highest three bits of each coefficient alone. 
The according code is shown in code 4. It takes 
approximately 16 instructions to calculate one 
column, which is much faster than the conventional 
approach. 

Lines 2 to 10 generate the reduction bits and put 
them at the correct position in a single word. In line 
12, these reduction bits are used to perform the 
coefficient reduction on the result of line 11. The rest 
of the code is similar to the one for MixColumns. 

 

Figure 3: Polynomial multiplication and 
reduction to yield a column after MixColumns. 

4. ROW-ORIENTED IMPLEMENTATION 

In a row-oriented AES implementation the 
MixColumns and InvMixColumns operations are 
calculated together for the complete State. The 
strength of this method lies in the possibility to reuse 
intermediate results for all four columns of the State. 
This advantage is especially significant in the 
relatively complex InvMixColumns operation. The 
conventional row-oriented MixColumns uses four 
GFDOUBLE operations, while InvMixColumns 
requires seven. Code 5 depicts the code for a 
conventional implementation of the GFDOUBLE 
operation. Here, the reduction information is 
extracted from poly in lines 2 to 4. The actual 
doubling of the four bytes takes place in line 5. 
Afterwards, the reduction is performed (line 6). This 
version of GFDOUBLE requires 10 instructions, but 
the reuse of the bitmasks in consecutive 
GFDOUBLE operations leads to a lower instruction 
count. There are four consecutive doublings in both 
MixColumns and InvMixColumns, which can be 
done in an average of 7 instructions each when the 
bitmasks are reused. 

 

Code 4: InvMixColumns for a single state 
column (using extensions). 
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Code 5: GFDOUBLE for row-wise 
MixColumns/InvMixColumns (conventional). 

With the help of the gf2mul, gf2mac and shacr 
instructions, the GFDOUBLE operation can be done 
slightly faster than with conventional instructions. 
Such an optimized version of GFDOUBLE is shown 
in code 6.The reduction information is extracted in a 
similar manner, but doubling and reduction are done 
with GF2MUL and GF2MAC, respectively. The 
optimized version takes about 7 instructions. When 
reusing the bitmask in four consecutive doublings, 
the average instruction count goes down to 
approximately 5. 

 

Code .6: GFDOUBLE for row-wise 
MixColumns/InvMixColumns (using extensions). 

5. RESULTS 

In order to implement and evaluate our new AES 
implementation approaches, we used a version of 
the LEON2-CIS  which includes the required ECC 
extensions. The processor configuration includes a 
(32×32)-bit unified integer/polynomial multiply-
accumulate unit with a 72-bit accumulator (including 
8 guard bits for integer multiply-accumulate). At the 
heart of this multiply-accumulate unit is a (32×16)-bit 
unified integer/polynomial multiplier. The processor 
has been implemented on the GR-PCI-XC2V FPGA 
board. 

On this version of the LEON2-CIS, a gf2mul 
instruction executes in three cycles, while a gf2mac 
instruction takes only a single cycle6. The shacr 
instruction always finishes in one cycle.  In order to 
estimate the hardware cost of the extensions, we 
have compared the synthesis results of a 
―conventional‖ LEON2 featuring a conventional 
(32×16)-bit integer multiplier to our LEON2-CIS 
variant. The latter requires about 5,5  kGates more 
than the reference version, whereby the added 
functionality encompasses not only all the extensions 
from], but also a signed multiply accumulate 
instruction. Unfortunately, the LEON2 does not offer 
a configuration with a (32×16)-bit multiply-
accumulate unit, so the sole cost of the instructions 
for binary polynomials cannot be determined easily. 

We have made tests with Gladman‘s AES code [3] 
using it both as reference as well as an instance of a 
column-oriented implementation. However, 
Gladman‘s code only allows to optimize the 
calculation of a single column and not of the whole 
MixColumns transformation. Therefore, we have 

implemented our own version of a column-oriented 
AES which is more easily optimized. Furthermore, 
we have implemented our own version of a row-
oriented AES following the ideas from. Our column-
oriented and row-oriented versions are written in C 
and support both encryption and decryption both for 
a pre computed key schedule as well as for on-the-fly 
key expansion. Moreover, all versions feature a 
conventional implementation with native SPARC V8 
instructions and an optimized implementation where 
MixColumns and InvMixColumns make use of the 
ECC instruction set extensions. 

Timing measurements have been done using the 
integrated cycle counter of the LEON2-CIS. The 
code which performs the measurements has been 
derived from Gladman‘s code. In order to get a fair 
comparison of the different implementation options, 
we have used a processor configuration with a very 
large instruction and data cache (4 sets with 16KB 
each, organized in lines of 8 words). The results 
therefore reflect performance in an environment with 
fast memory access or with ―perfect‖ cache. 

5.1 Precomputed Key Schedule 

Table2: Execution times of AES-128 encryption, 
decryption and key expansion. 

 

Table2 lists the timing results for AES-128 
encryption and decryption when using a 
precomputed key schedule. The time for doing the 
key expansion is also stated. The speedup is 
calculated between the best conventional 
implementation and the best optimized 
implementation (best performance marked in bold). 
The row-oriented AES is best for both conventional 
encryption and decryption. For the optimized 
variants, the column-oriented implementation is best 
for encryption, while the performance for decryption 
is nearly identical for the column-oriented and row-
oriented version. 

5.2 On-the-fly Key Expansion 

The timing results in Table3 refer to AES-128 
encryption and decryption with on-the-fly key 
expansion. As Gladman‘s code does not support 
this mode, only the results for our column-oriented 
and row-oriented version are stated. Note that the 
last round key is supplied to the decryption routine, 
so that it does not have to perform the whole key 
expansion at the beginning of decryption. For 
conventional encryption, the column-oriented AES is 
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slightly better, while for decryption, the row-oriented 
version is fastest. For the versions which use the 
ECC extensions, the column-oriented AES is better 
for both encryption and decryption. The speedup is 
again calculated considering the best conventional 
and optimized version. 

Table 3: Execution times of AES-128 encryption 
and decryption with on-the-fly key expansion. 

 

5.3 Code Size and Side-Channel Attacks 

The code size for the implementations ranges 
between 2.5KB and 3.5 KB, where the optimized 
variants are always smaller than the non-optimized 
ones. Note however, that the implementations have 
been optimized for speed and not for code size. 
Savings through optimization go up to 15% (for 
column-wise decryption with precomputed key 
schedule). 

The susceptibility to side-channel attacks is not 
changed through the use of the instruction set 
extensions. It is therefore necessary to integrate 
countermeasures into a system which calculates 
AES using the presented methods, if resistance 
against side-channel attacks is required. 

6. CONCLUSION 

This paper demonstrated the use of instruction set 
extensions originally designed for elliptic curve 
cryptography for the acceleration of software 
implementations of AES. Although not specifically 
designed for that purpose, the use of the three 
instructions gf2mul, gf2mac and shacr allows 
performance gains of up to 25%. This speedup can 
be considered as ―free‖ on processors which already 
feature these instructions. Generally, the column-
oriented AES implementations can be optimized very 
well with the instruction set extensions. 
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