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Abstract – A proper coloring of a graph is an assignment of colors to the vertices of the graph so that no 
two adjacent vertices have the same color. Usually we drop the word "proper'' unless other types of 
coloring are also under discussion. Of course, the "colors'' don't have to be actual colors; they can be any 
distinct labels—integers, for example. If a graph is not connected, each connected component can be 
colored independently; except where otherwise noted, we assume graphs are connected. 

If the vertices of a graph represent academic classes, and two vertices are adjacent if the corresponding 
classes have people in common, then a coloring of the vertices can be used to schedule class meetings. 
Here the colors would be schedule times, such as 8MWF, 9MWF, 11TTh, etc. 
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INTRODUCTION 

If the vertices of a graph represent radio stations, and 
two vertices are adjacent if the stations are close 
enough to interfere with each other, a coloring can be 
used to assign non-interfering frequencies to the 
stations. 

If the vertices of a graph represent traffic signals at an 
intersection, and two vertices are adjacent if the 
corresponding signals cannot be green at the same 
time, a coloring can be used to designate sets of 
signals than can be green at the same time. 

Graph coloring is closely related to the concept of 
an independent set.A set SS of vertices in a graph is 
independent if no two vertices of SS are adjacent. 

If a graph is properly colored, the vertices that are 
assigned a particular color form an independent set. 
Given a graph GG it is easy to find a proper coloring: 
give every vertex a different color. Clearly the 
interesting quantity is the minimum number of colors 
required for a coloring. It is also easy to find 
independent sets: just pick vertices that are mutually 
non-adjacent. A single vertex set, for example, is 
independent, and usually finding larger independent 
sets is easy. The interesting quantity is the maximum 
size of an independent set. 

The chromatic number of a graph GG is the minimum 
number of colors required in a proper coloring; it is 
denoted χ(G)χ(G). The independence 

number of GG is the maximum size of an 
independent set; it is denoted α(G)α(G). 

The natural first question about these graphical 
parameters is: how small or large can they be in a 
graph GG with nn vertices. It is easy to see that 

11≤χ(G)≤n≤α(G)≤n1≤χ(G)≤n1≤α(G)≤n 

and that the limits are all attainable: A graph with no 
edges has chromatic number 1 and independence 
number nn, while a complete graph has chromatic 
number nn and independence number 1. These 
inequalities are thus not very interesting. We will see 
some that are more interesting. 

Any coloring of GG provides a proper coloring of HH, 
simply by assigning the same colors to vertices 
of HH that they have in GG. This means that HH can 
be colored with χ(G)χ(G) colors, perhaps even fewer, 
which is exactly what we want. 

Often this fact is interesting "in reverse''. For 
example, if GG has a subgraph HH that is a complete 
graph KmKm, then χ(H)=mχ(H)=m and 
so χ(G)≥mχ(G)≥m. A subgraph of GG that is a 
complete graph is called a clique, and there is an 
associated graphical parameter. 
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The clique number of a graph GG is the 
largest mm such that KmKm is a sub-graph of GG. 

It is tempting to speculate that the only way a 
graph GG could require mm colors is by having such a 
subgraph. This is false; graphs can have high 
chromatic number while having low clique number; see 
figure 1. It is easy to see that this graph has χ≥3χ≥3, 
because there are many 3-cliques in the graph. In 
general it can be difficult to show that a graph cannot 
be colored with a given number of colors, but in this 
case it is easy to see that the graph cannot in fact be 
colored with three colors, because so much is "forced''. 
Suppose the graph can be colored with 3 colors. 
Starting at the left if vertex v1v1 gets color 1, 
then v2v2 and v3v3 must be colored 2 and 3, and 
vertex v4v4 must be color 1. Continuing, v10v10 must 
be color 1, but this is not allowed, so χ>3χ>3. On the 
other hand, since v10v10 can be colored 4, we 
see χ=4χ=4. 

Bipartite graphs with at least one edge have chromatic 
number 2, since the two parts are each independent 
sets and can be colored with a single color. 
Conversely, if a graph can be 2-colored, it is bipartite, 
since all edges connect vertices of different colors. 
This means it is easy to identify bipartite graphs: Color 
any vertex with color 1; color its neighbors color 2; 
continuing in this way will or will not successfully color 
the whole graph with 2 colors. If it fails, the graph 
cannot be 2-colored, since all choices for vertex colors 
are forced. 

 

Figure 1. A graph with clique number 3 and 
chromatic number 4 

If a graph is properly colored, then each color class (a 
color class is the set of all vertices of a single color) is 
an independent set. 

Theorem: In any graph GG, χ≤Δ+1χ≤Δ+1. 

Proof 
We show that we can always 
color GG with Δ+1Δ+1 colors by a simple greedy 
algorithm: Pick a vertex vnvn, and list the vertices 
of GG as v1,v2,…,vnv1,v2,…,vn so that 

if i<ji<j,d(vi,vn)≥d(vj,vn)d⁡(vi,vn)≥d (vj,vn), that is, we 
list the vertices farthest from vnvn first. We use 
integers 1,2,…,Δ+11,2,…,Δ+1 as colors. 

Color v1v1 with 1. Then for each vivi in order, 
color vivi with the smallest integer that does not violate 
the proper coloring requirement, that is, which is 
different than the colors already assigned to the 
neighbors of vivi. For i<ni<n, we claim that viviis 
colored with one of 1,2,…,Δ1,2,…,Δ. 

This is certainly true for v1v1. For 1<i<n1<i<n, vivi has 
at least one neighbor that is not yet colored, namely, a 
vertex closer to vnvn on a shortest path 
from vnvn to vivi. Thus, the neighbors of vivi use at 
most Δ−1Δ−1 colors from the colors 1,2,…,Δ1,2,…,Δ, 
leaving at least one color from this list available for vivi. 

Once v1,…,vn−1v1,…,vn−1 have been colored, all 
neighbors of vnvn have been colored using the 
colors 1,2,…,Δ1,2,…,Δ, so color Δ+1Δ+1 may be used 
to color vnvn. 

Note that if d(vn)<Δd⁡(vn)<Δ, even vnvn may be 
colored with one of the colors 1,2,…,Δ1,2,…,Δ. Since 
the choice of vnvn was arbitrary, we may 

choose vnvn so that d(vn)<Δd⁡(vn)<Δ, unless all 
vertices have degree ΔΔ, that is, if GG is regular. 
Thus, we have proved somewhat more than stated, 
namely, that any graph GG that is not regular 
has χ≤Δχ≤Δ. (If instead of choosing the particular 
order of v1,…,vnv1,…,vn that we used we were to list 
them in arbitrary order, even vertices other 
than vnvnmight require use of color Δ+1Δ+1. This 
gives a slightly simpler proof of the stated theorem.) 
We state this as a corollary. 

DISCUSSION 

Corollary: If GG is not regular, χ≤Δχ≤Δ. 

There are graphs for which χ=Δ+1χ=Δ+1: any cycle of 
odd length has Δ=2Δ=2 and χ=3χ=3, 
and KnKn has Δ=n−1Δ=n−1 and χ=nχ=n. Of course, 
these are regular graphs. It turns out that these are 
the only examples, that is, if GG is not an odd cycle or 
a complete graph, then χ(G)≤Δ(G)χ(G)≤Δ(G). 

Theorem (Brooks's Theorem) If GG is a graph other 
than KnKn or C2n+1C2n+1, χ≤Δχ≤Δ. 

The greedy algorithm will not always color a graph 
with the smallest possible number of colors. Figure  2 
shows a graph with chromatic number 3, but the 
greedy algorithm uses 4 colors if the vertices are 
ordered as shown. 

In general, it is difficult to compute χ(G)χ(G), that is, it 
takes a large amount of computation, but there is a 
simple algorithm for graph coloring that is not fast. 
Suppose that vv and ww are non-adjacent vertices 
in GG. Denote by G+{v,w}=G+eG+{v,w} = G+e the 
graph formed by adding edge e = {v,w}e = 
{v,w} to GG. Denote by G/eG/e the graph in 
which vv and ww are "identified'', that 
is, vv and ww are replaced by a single 
vertex xx adjacent to all neighbors of vv and ww. (But 
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note that we do not introduce multiple edges: if uu is 
adjacent to both vv and ww in GG, there will be a 
single edge from xx to uu in G/eG/e.) 

 

Figure 2. A greedy coloring on the left and best 
coloring on the right 

Consider a proper coloring of GG in 
which vv and ww are different colors; then this is a 
proper coloring of G+eG+e as well. Also, any proper 
coloring of G+eG+e is a proper coloring of GG in 
which vv and ww have different colors. So a coloring 
of G+eG+e with the smallest possible number of colors 
is a best coloring of GG in which vv and ww have 
different colors, that is, χ(G+e)χ(G+e) is the smallest 
number of colors needed to color GG so 
that vv and ww have different colors. 

If GG is properly colored and vv and ww have the 
same color, then this gives a proper coloring 
of G/eG/e, by coloring xx in G/eG/e with the same 
color used for vv and ww in GG. Also, if G/eG/e is 
properly colored, this gives a proper coloring of GG in 
which vv and ww have the same color, namely, the 
color of xx in G/eG/e. Thus, χ(G/e)χ(G/e) is the 
smallest number of colors needed to properly 
color GG so that vv and ww are the same color. 

CONCLUSION 

The upshot of these observations is that χ (G) = min (χ 
(G+e), χ (G/e))χ(G) = min (χ (G+e), χ(G/e)). This 
algorithm can be applied recursively, that is, if G1 = 
G+eG1 = G+e and G2 = G/eG2 = G/e then χ (G1) = 
min(χ(G1+e), χ(G1/e))χ(G1) = 
min(χ(G1+e),χ(G1/e)) and χ (G2) = min (χ (G2+e), χ 
(G2/e)) χ (G2) = min (χ(G2+e), χ(G2/e)), where of 
course the edge ee is different in each graph. 
Continuing in this way, we can eventually 
compute χ(G)χ(G), provided that eventually we end up 
with graphs that are "simple'' to color. Roughly 
speaking, because G/eG/e has fewer vertices, 
and G+eG+e has more edges, we must eventually end 
up with a complete graph along all branches of the 
computation. Whenever we encounter a complete 
graph Km it has chromatic number mm, so no further 
computation is required along the corresponding 
branch. 
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