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Abstract – This work is an attempt to recreate Quantum Mechanics conceptual foundations. First, we 
claim that the wave function in quantum mechanics is a definition of random discontinuous particle 
motion, and that the wave function's modulus square gives the particle probability density at some space 
locations. First, we demonstrate that the linear, non-relativistic evolution of an isolated system's wave 
function obeys the free Schr  odinger equation due to the spacetime translation invariance and relativistic 
invariance requirements. Thirdly, we argue that the discontinuous random motion of the particles will 
lead to a stochastic, nonlinear collapse of the wave function. A discrete model of the energy-conserved 
collapse of the wave function is proposed and demonstrated to be consistent with current experiments 
and our macroscopic experience. We also offer a crucial review of the de Broglie-Bohm theory, the 
explanation of several worlds and other theories of dynamic collapse, and briefly discuss the question of 
the incompatibility between quantum mechanics and particular relativity. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - X - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

INTRODUCTION 

Quantum mechanics is a non-relativistic theory about 
the wave function and its evolution according to its 
Schr  odinger image. The philosophical foundations of 
quantum mechanics pose two big issues. The first 
relates to the theory of the physical meaning of the 
wave function. It has been commonly argued that the 
definition of probability is not entirely sufficient 
because of resorting to the ambiguous principle of 
estimation-although it is nowadays still the main 
definition in textbooks. At the other hand, the 
importance of the wave function is still in question in 
the alternatives to quantum mechanics such as the 
theory of de Broglie-Bohm and the definition of many 
worlds (de Broglie 1928; Bohm 1952; Everett 1957; 
De Witt and Graham 1973). Exactly what then 
defines the wave function? The second issue relates 
to wave function evolution. This has two pieces of it. 
One part relates to the evolution of the linear 
Schr  odinger. How does the Schr  odinger equation 
satisfy the linear, non-relativistic evolution of the 
wave function? It seems the equation still lacks a 
satisfactory derivation (cf. Nelson 1966). The other 
aspect refers to the failure of the wave function 
during a measurement which is generally called the 
problem of measurement. In quantum mechanics the 
postulate of collapse is ad hoc, and the theory does 
not inform us how a definite measurement result 
emerges (Bell 1990). While the alternatives to 
quantum mechanics already offer their respective 
solutions to this question, which solution is correct or 
in the right direction has been a hot topic of debate. 

Ultimately it is still unclear whether or not the 
collapse of the wavefunction is true. Even if the 
wave function collapses in certain conditions, the 
exact why and how the wave function collapses 
remains unknown. The problem of measurement 
was generally known as one of the most 
complicated and important problems in the 
foundations of quantum mechanics (see, e.g., 
Wheeler and Zurek 1983). We will seek to solve 
certain problems from a new perspective in this 
study. The aim is to understand that the problem of 
interpreting the wave function can be solved 
independently of how to solve the problem of 
measurement, and the solution to the first problem 
will then have major consequences for the second 
solution. While the sense of the wave function 
should be listed as the quantum mechanics' first 
interpretative problem, it has been treated as a 
marginal problem, particularly when compared with 
the measurement problem. As noted above, there 
are already several alternatives to quantum 
mechanics which provide the measurement problem 
with respective solutions. At their present point, 
however, these theories are unsatisfactory in at 
least one aspect; they have failed to make sense of 
the wave function. Different from them, our 
approach is to first figure out what physical state the 
wave function represents and then explore the 
answer's implications for the solutions to other basic 
quantum mechanics problems. It seems very 
important to know exactly what the wave function is 
if we try to find out how it progresses, e.g. whether it 
breaks during a calculation, or not. Such issues, 
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however, are usually related to one another. In fact, 
to know what physical state a quantum system's 
wave function represents, we need to measure the 
system in the first place, while the measuring method 
and the outcome of the measurement are actually 
determined by the evolution rule for the wave 
function. Fortunately, it has been realized that the 
conventional measurement which leads to the 
apparent collapse of the wave function is only one 
form of quantum measurement, and that there is also 
another type of measurement which prevents the 
collapse of the wave function, namely the protective 
measurement (Aharonov and Vaidman 1993; 
Aharonov, Anandan and Vaidman 1993; Aharonov, 
Anandan and Vaidman 1996). Protective 
measurement is a method for measuring the 
expectation values of observables on a single 
quantum system without substantially disrupting its 
state, and its mechanism is independent of the 
controversial wavefunction collapse process and 
relies solely on the linear Schr  odinger evolution and 
the Born law, two known parts of quantum 
mechanics. As a result, protective measurement can 
not only calculate the physical state of a quantum 
system and help expose the meaning of the wave 
function, but can also be used before experiments 
provide the final judgment to test the solutions to the 
measurement question. A complete exposition of 
these ideas will be given in the chapters that follow. 
The studies' strategy is as follows. In Chapter 2, we 
explore the physical meaning of wave motion for the 
first time. The mass and charge distributions of a 
quantum system as a part of its physical state can be 
determined as expectation values of other 
observables according to protective measurement. It 
turns out that a quantum system's mass and charge 
are distributed across space, and the mass and 
charge density at each location is proportional to the 
square modulus of the system's wave function there. 
The key to unveiling the significance of the wave 
function is to locate the origin of the distributions of 
mass and charge. The density is seen not to be 
actual but to be effective; it is created by the time-
average of the ergodic motion of a localized particle 
with the total mass and the device charge. It is 
further argued that the ergodic movement is not 
constant, but discontinuous and spontaneous. Based 
on this finding, we say that the wave function 
represents the state of random discontinuous particle 
motion, and in particular, the modulus square of the 
wave function (in position space) gives the probability 
density of the particles occurring at certain space 
positions. It is shown that due to the requirements of 
spacetime translation invariance and relativistic 
invariance the linear non-relativistic evolution of the 
wave function of an isolated system obeys the free 
Schr  odinger equation. While those specifications are 
already well known, the literature still lacks an explicit 
and complete derivation of the free Schr  odinger 
equation using them. The new integrated analysis, 
along with the proposed wave function definition, 
may be helpful in understanding the physical roots of 
the Schr  odinger equation. In addition, we are also 

discussing the physical basis and importance of the 
energy and momentum conservation theory in 
quantum mechanics. In Chapter 4, for the solutions 
to the measurement question, we explore the 
consequences of protective measurement and the 
suggested definition of wave function based upon it. 
First of all, we argue that the two no-collapse 
quantum theories, namely the de Broglie-Bohm 
theory and the definition of many worlds, are 
incompatible with protective measurement and the 
image of spontaneous discontinuous particle motion. 
This finding clearly implies that collapse of the 
wavefunction is a physical phenomenon in itself. 
Second, we argue that random discontinuous particle 
motion can provide a suitable random source for 
collapse of the wave function. The main point is to 
understand that the instantaneous state of a particle 
not only includes its wave function but also includes 
its random position, momentum and energy that 
undergoes the discontinuous motion, and these 
random variables may have a stochastic effect on 
the evolution of the wave function and thus 
contribute to the collapse of the wave function. 
Third, we are proposing a separate model of 
collapse of the energy-conserved wavefunction. The 
model is shown to comply with current experiments 
and our macroscopic experience. Finally, we also 
have some important feedback on other models of 
dynamic collapse, including the collapse-induced 
Penrose model and the CSL (Continuous 
Spontaneous Localization) model. Throughout the 
last chapter, we briefly discuss the incompatibility 
issue between quantum mechanics and special 
relativity throughout terms of random discontinuous 
particle motion. It is argued that a consistent 
description of random discontinuous particle motion 
requires absolute simultaneity, and this leads to the 
existence of a preferred Lorentz frame when 
combined with the constancy of light speed 
requirement. However, it is shown that the dynamics 
of collapse can provide a method for detecting the 
frame according to the model of collapse which is 
conserved in energy. 

MEANING OF WAVE FUNCTION 

A important interpretative question in quantum 
mechanics is the physical sense of the wave 
function. Despite the theory's developments of more 
than eighty years, however, it is still a debated 
subject. In addition to the traditional definition of the 
probability in textbooks, the alternatives to quantum 
mechanics often include numerous contradictory 
views about the wave function. Within this chapter, 
through a new study of the protective calculation 
and the mass and charge density of a quantum 
system, we will attempt to solve this fundamental 
interpretive problem. In the form of traditional 
impulse measurements, the importance of the wave 
function is often evaluated, for which the coupling 
interaction between the measured mechanism and 
the measuring device is of short duration and solid. 
As a consequence, while a quantum system's wave 
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function is usually distributed over space, an impulse 
position measurement would eventually collapse the 
wave function, and can only detect the system in a 
random space position. Therefore it is unsurprising 
that the traditional definition of probability is believed 
to link the wave function to the likelihood of such 
random measurement effects. 

Nevertheless, it has been recognized that there is 
another form of measurement that can prevent the 
wave function from collapsing, namely the protective 
measurement (Aharonov and Vaidman 1993; 
Aharonov, Anandan and Vaidman 1993; Aharonov, 
Anandan and Vaidman 1996). Protective 
measurement often uses a common measuring 
technique, but with a low and long-lasting coupling 
interaction and a special method to avoid collapse of 
the measured wave function. The general approach 
is to allow the measured system to be in a non-
degenerate property of the entire Hamiltonian using 
an acceptable protective relationship (in certain 
cases the security is given by the measured system 
itself), and then to make the measurement 
adiabatically so that the state of the system does not 
change or become appreciably entangled with the 
measuring instrument. Such protective 
measurements can thus measure the expectations of 
observables on a single quantum system, and in 
particular, the mass and charging density of a 
quantum system as a part of its physical state, as 
well as its wave function, can be measured as 
expectations of certain observables. 

The mass and charge of a quantum system are 
distributed throughout space according to protective 
measurement, and the mass and charge density in 
each position is proportional to the modulus square 
of the system's wave function there. The key to 
revealing the meaning of the wave function is to find 
the physical origin of the distributions of mass and 
charge. Historically, Schr  odinger originally proposed 
the charging density definition for electrons when he 
introduced the wave function and established wave 
mechanics (Schr  odinger 1926). Although the 
presence of an electron's charge density may 
provide a classical explanation for certain radiation 
phenomena, its explanatory capacity is very minimal. 
In addition, Schr  odinger explicitly understood that 
the density of charge cannot be classical because 
his equation does not contain the normal classical 
density interaction. 

This initial interpretation of the wave function was 
soon rejected and replaced by Born's probability 
interpretation (Born 1926), presumably since people 
thought that the charge density could not be 
measured and also lacked a consistent physical 
picture. Now defensive calculation re endows an 
electron's charging distribution with fact with a more 
compelling argument. The problem then is whether a 
clear physical explanation can be found1. To some 
extent our following analysis can be seen as a further 
development of the idea of Schr  odinger. The irony 
is: that the charge distribution is not classic does not 

mean its non-existence; instead, its presence points 
to a non-classical representation of quantum reality 
hidden behind the function of the mathematical 
wave. 

ANALYSIS 

Protective Measurements 

Protective measurements are improved methods 
based on weak measurements, and they can 
measure the expectations of observables on a single 
quantum system. As we have seen above, although 
a weak measurement does not significantly change 
the measured state, the measuring device's pointer 
also hardly moves. The change of the pointer due to 
the calculation is, in fact, much smaller than its 
uncertainty of location, and therefore little information 
can be gained from individual measurements. 
Increasing the coupling time between the measured 
system and the measuring tool is a potential way to 
mitigate the vulnerability of inadequate measures. If 
the state during the calculation is nearly constant, 
the cumulative pointer change, which is proportional 
to the length of the interaction, would be high 
enough to be known. Under normal circumstances, 
however, the state of the system during the 
calculation is not constant, and the weak coupling 
often contributes to a small rate of state change. As 
a result, the reading of the measuring device would 
lead to some time average based on the nature of 
the state determined by the measuring process, not 
the state that the system had prior to the 
measurement. 

 

Fig.1 Scheme of a protective measurement of 
the charge density of a quantum system 

Single particle Picture 

In the case of a particle's random discontinuous 
motion, the particle appears to be in any possible 
position at a given instant, and the probability 
density of the particle being in each x position at a 
given instant t is determined by the squared module 
of its wave function, namely π(x, t)=, t) 2 The 
physical description of particle motion is as follows. 
The particle randomly remains in a position at a 
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discrete moment, and at the next instant it will either 
remain there or appear randomly in another spot, 
which is presumably not in the neighborhood of the 
preceding spot. In this way, the particle can travel 
discontinuously across the entire space over a time 
interval that is much greater than the length of one 
moment, with the position probability density p(x, t). 
This jumping mechanism is clearly non-local, 
because the distance between the positions 
occupied by the particle at two adjacent instants can 
be very high. The non-local jumping mechanism is 
the same in any inertial frame, in the non-relativistic 
domain where time is absolute. But in the relativistic 
context, thanks to the Lorentz transformation, the 
jumping process can look different in different inertial 
frames. Let's come up with a clear review. Suppose 
a particle is at instant t1 in position x1 and at instant 
t2 in an inertial frame S in position x2. The Lorentz 
transformation leads to: In another inertial frame S 0 
with velocity v relative to S. 

 

Since the particle's jumping process is non-local, the 
two events (t1, x1) and (t2, x2) can meet the spatial 

separation condition readily?  Then 
we can always choose a possible velocity v < c 

which results in  

 

On the absoluteness of simultaneity 

The above analysis clearly demonstrates the 
apparent conflict between the random discontinuous 
motion of particles and the Lorentz transformation in 
special relativity. The crux of the matter lies in the 
relativity of simultaneity. If simultaneity is relative as 
manifested by the Lorentz transformation, then the 
picture of random discontinuous motion of particles 
will be seriously distorted except in one preferred 
frame, though the distortion is unobservable in 
principle. Only when simultaneity is absolute, can the 
picture of random discontinuous motion of particles 
be kept perfect in every inertial frame. In the 
following, we will show that absolute simultaneity is 
not only possible, but also necessitated by the 
existence of random discontinuous motion of 

particles and its collapse evolution. Although the 
relativity of simultaneity has been often regarded as 
one of the essential concepts of special relativity, it is 
not necessitated by experimental facts but a result of 
the choice of standard synchrony (see, e.g. 
Reichenbach 1958; Gr¨unbaum 1973)8 . As Einstein 
(1905) already pointed out in his first paper on 
special relativity, whether or not two spatially 
separated events are simultaneous depends on the 
adoption of a convention in the framework of special 
relativity. In particular, the choice of standard 
synchrony, which is based on the constancy of one-
way speed of light and results in the relativity of 
simultaneity, is only a convenient convention. Strictly 
speaking, the speed constant c in special relativity is 
two-way speed, not one-way speed, and as a result, 
the general spacetime transformation required by the 
constancy of two-way speed of light is not the 
Lorentz transformation but the EdwardsWinnie 
transformation (Edwards 1963; Winnie 1970): 

 

 

 

 

 

The above study shows the probability of preserving 
absolute simultaneity within the context of special 
relativity. One can adopt the standard synchrony 
which leads to simultaneity relativity, and one can 
also adopt the non-standard synchrony which 
restores simultaneity absolute. This is allowed 
because in special relativity there is no causal 
connection between two spatially separated events. 
However, if there is a causal influence that links two 
distinct events, then there will be a non-conventional 
basis for claiming that they are not simultaneous 
(Reichenbach 1958; Gr  unbaum 1973; Janis 2010). 
Especially if there is an arbitrarily fast causal 
influence connecting two separate events in space, 
then these two events will be simultaneous. We'll 
see in the following that random discontinuous 
motion and its collapse evolution merely provide a 
non-conventional basis for the absolute simultaneity. 
Consider a particle being in a superposition of two 
spatial branches well separated. According to the 
random discontinuous motion picture the particle 
jumps randomly and discontinuously between these 
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two branches. The particle is in one branch at an 
instant, and could be in the other spatially-separated 
branch at the next moment. The particle's 
disappearance in the first branch can be considered 
one event, and the particle's appearance in the 
second branch can be considered another. Clearly 
between these two spatially separated events there 
is an immediate causal connection; if the particle did 
not vanish in the first branch, it might not appear in 
the second branch. Those two things would also be 
considered simultaneous. Note that this inference is 
meaningless for observability of the two events and 
their causal relation. In addition, the conclusion is 
also irrelevant for the frame of reference, which 
means that simultaneity is absolute 

COCNLUSION 

Within this paper , we focused on two basic problems 
in the conceptual foundations of quantum 
mechanics. The first is wave function perception and 
the second is the question of measurement. We have 
concluded that protective measures can help to 
establish the physical nature of the action of the 
waves. Since the beginning of quantum mechanics 
the definition of wave function has been a debated 
question. We conclude by discussing two possible 
future research projects that our findings indicate and 
their potential consequences for future study. Under 
that context, I would treat a definitive decision as 
equal to a complete surrender. Since we can't really 
stop our thought in terms of space and time, and 
what we can't comprehend inside it, we can't 
comprehend at all. "Now the suggested image of 
random discontinuous particle motion in space and 
time might provide a potential explanation of what's 
going on in an atom and help us understand the 
mysterious quantum universe. 
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